子集化data.table的速度取决于奇怪的特定键值?

Pau*_*aul 5 r data.table

有人可以解释一下以下输出吗?除非我遗漏了某些东西(我可能是这样),否则似乎对data.table进行子集化的速度取决于存储在其中一列中的特定值,即使它们属于同一类并且除了它们之外没有明显的差异值.

这怎么可能?

> dim(otherTest)
[1] 3572069       2
> dim(test)
[1] 3572069       2
> length(unique(test$keys))
[1] 28741
> length(unique(otherTest$keys))
[1] 28742
> sapply(test,class)
 thingy        keys 
"character" "character" 
> sapply(otherTest,class)
 thingy        keys 
"character" "character" 
> class(test)
[1] "data.table" "data.frame"
> class(otherTest)
[1] "data.table" "data.frame"
> start = Sys.time()
>   newTest = otherTest[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.5438871 secs
> start = Sys.time()
>   newTest = test[keys%in%partition]
>   end  = Sys.time() 
>   print(end - start)
Time difference of 42.78009 secs
Run Code Online (Sandbox Code Playgroud)

摘要编辑:因此速度的差异与不同大小的data.tables无关,也不与不同数量的唯一值有关.正如您在上面的修改示例中所看到的,即使在生成密钥以使它们具有相同数量的唯一值(并且在相同的一般范围内并且共享至少1个值,但通常是不同的)之后,我得到了相同的性能差异.

关于共享数据,遗憾的是我无法共享测试表,但我可以分享其他测试.整个想法是我试图尽可能地复制测试表(相同的大小,相同的类/类型,相同的键,NA值的数量等),以便我可以发布到SO - 但奇怪的是我的制作up data.table表现得非常不同,我无法弄清楚为什么!

另外,我要补充一点,我怀疑这个问题的唯一原因是来自data.table,几个星期前我遇到了类似的问题,对data.table进行了子集化,结果证明是新数据中的一个实际错误.table release(我最后删除了这个问题,因为它是重复的).该错误还涉及使用%in%函数来对data.table进行子集化 - 如果在%in%的右边参数中有重复,则返回重复的输出.因此,如果x = c(1,2,3)和y = c(1,1,2,2),%y中的x%将返回长度为8的向量.我已经树脂化了data.table包,所以我不要认为它可能是同一个错误 - 但也许相关?

编辑(re Dean MacGregor的评论)

> sapply(test,class)
 thingy        keys 
"character" "character" 
> sapply(otherTest,class)
 thingy        keys 
"character" "character" 


# benchmarking the original test table
>   test2 =data.table(sapply(test ,as.numeric))
>   otherTest2 =data.table(sapply(otherTest ,as.numeric))
>   start = Sys.time()
>   newTest = test[keys%in%partition])
>   end  = Sys.time()
>   print(end - start)
Time difference of 52.68567 secs
> start = Sys.time()
>   newTest = otherTest[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.3503151 secs

#benchmarking after converting to numeric
> partition = as.numeric(partition)
> start = Sys.time()
>   newTest = otherTest2[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.7240109 secs
> start = Sys.time()
>    newTest = test2[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 42.18522 secs

#benchmarking again after converting back to character
> partition = as.character(partition)
> otherTest2 =data.table(sapply(otherTest2 ,as.character))
> test2 =data.table(sapply(test2 ,as.character))
> start = Sys.time()
>   newTest =test2[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 48.39109 secs
> start = Sys.time()
>   newTest = data.table(otherTest2[keys%in%partition])
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.1846113 secs
Run Code Online (Sandbox Code Playgroud)

所以减速不依赖于阶级.

编辑:问题显然来自data.table,因为我可以转换为矩阵,问题消失,然后转换回data.table,问题又回来了.

编辑:我注意到问题与data.table函数如何处理重复有关,这听起来是正确的,因为它类似于我上周在上面描述的数据表1.9.4中发现的错误.

>   newTest =test[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 39.19983 secs
> start = Sys.time()
>   newTest =otherTest[keys%in%partition]
>   end  = Sys.time()
 >   print(end - start)
 Time difference of 0.3776946 secs
> sum(duplicated(test))/length(duplicated(test))
[1] 0.991954
> sum(duplicated(otherTest))/length(duplicated(otherTest))
[1] 0.9918879
> otherTest[duplicated(otherTest)] =NA
 > test[duplicated(test)]= NA
> start = Sys.time()
>   newTest =otherTest[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.2272599 secs
> start = Sys.time()
>   newTest =test[keys%in%partition]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.2041721 secs
Run Code Online (Sandbox Code Playgroud)

因此,即使它们具有相同数量的重复项,两个data.tables(或更具体地说,data.table中的%函数中的%)显然也不同地处理重复项.与重复相关的另一个有趣的观察是这个(注意我再次从原始表开始):

> start = Sys.time()
>   newTest =test[keys%in%unique(partition)]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.6649222 secs
> start = Sys.time()
>   newTest =otherTest[keys%in%unique(partition)]
>   end  = Sys.time()
>   print(end - start)
Time difference of 0.205637 secs
Run Code Online (Sandbox Code Playgroud)

因此,从右边的参数中删除重复项到%in%也可以解决问题.

因此,鉴于这一新信息,问题仍然存在:为什么这两个data.tables以不同方式处理重复值?

hrb*_*str 3

您关注的是data.table它的时间match%in%match操作定义)以及您应该关注的向量的大小。一个可重现的例子:

library(microbenchmark)

set.seed(1492)

# sprintf to keep the same type and nchar of your values

keys_big <- sprintf("%014d", sample(5000, 4000000, replace=TRUE))
keys_small <- sprintf("%014d", sample(5000, 30000, replace=TRUE))

partition <- sample(keys_big, 250)

microbenchmark(
  "big"=keys_big %in% partition,
  "small"=keys_small %in% partition
)

## Unit: milliseconds
##   expr        min         lq       mean     median         uq        max neval cld
##    big 167.544213 184.222290 205.588121 195.137671 205.043641 376.422571   100   b
##  small   1.129849   1.269537   1.450186   1.360829   1.506126   2.848666   100  a 
Run Code Online (Sandbox Code Playgroud)

来自文档:

match返回第一个参数在第二个参数中的(第一个)匹配位置的向量。

这本质上意味着它将取决于向量的大小以及如何找到(或找不到)“接近顶部”的匹配。

但是,您可以使用%chin%fromdata.table来加速整个过程,因为您使用的是字符向量:

library(data.table)

microbenchmark(
  "big"=keys_big %chin% partition,
  "small"=keys_small %chin% partition
)
## Unit: microseconds
##   expr       min         lq       mean     median        uq        max neval cld
##    big 36312.570 40744.2355 47884.3085 44814.3610 48790.988 119651.803   100   b
##  small   241.045   264.8095   336.1641   283.9305   324.031   1207.864   100  a 
Run Code Online (Sandbox Code Playgroud)

您还可以使用该fastmatch包(但您已经data.table加载并正在使用字符向量,因此 6/1|0.5*12):

library(fastmatch)

# gives us similar syntax & functionality as %in% and %chin%

"%fmin%" <- function(x, table) fmatch(x, table, nomatch = 0) > 0

microbenchmark(
  "big"=keys_big %fmin% partition,
  "small"=keys_small %fmin% partition
)

## Unit: microseconds
##   expr       min         lq       mean     median        uq        max neval cld
##    big 75189.818 79447.5130 82508.8968 81460.6745 84012.374 124988.567   100   b
##  small   443.014   471.7925   525.2719   498.0755   559.947    850.353   100  a 
Run Code Online (Sandbox Code Playgroud)

无论如何,任一向量的大小将最终决定操作的快/慢。但后两个选项至少能让你更快地得到结果。以下是小向量和大向量三者之间的比较:

library(ggplot2)
library(gridExtra)

microbenchmark(
  "small_in"=keys_small %in% partition,
  "small_ch"=keys_small %chin% partition,
  "small_fm"=keys_small %fmin% partition,
  unit="us"
) -> small

microbenchmark(
  "big_in"=keys_big %in% partition,
  "big_ch"=keys_big %chin% partition,
  "big_fm"=keys_big %fmin% partition,
  unit="us"
) -> big

grid.arrange(autoplot(small), autoplot(big))
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

更新

根据OP评论,这是考虑子集和不子data.table集的另一个基准:

dat_big <- data.table(keys=keys_big)

microbenchmark(

  "dt"        = dat_big[keys %in% partition],
  "not_dt"    = dat_big$keys %in% partition,

  "dt_ch"     = dat_big[keys %chin% partition],
  "not_dt_ch" = dat_big$keys %chin% partition,

  "dt_fm"     = dat_big[keys %fmin% partition],
  "not_dt_fm" = dat_big$keys %fmin% partition

)

## Unit: milliseconds
##       expr       min        lq      mean    median        uq      max neval    cld
##         dt  11.74225  13.79678  15.90132  14.60797  15.66586 129.2547   100 a     
##     not_dt 160.61295 174.55960 197.98885 184.51628 194.66653 305.9615   100      f
##      dt_ch  46.98662  53.96668  66.40719  58.13418  63.28052 201.3181   100   c   
##  not_dt_ch  37.83380  42.22255  50.53423  45.42392  49.01761 147.5198   100  b    
##      dt_fm  78.63839  92.55691 127.33819 102.07481 174.38285 374.0968   100     e 
##  not_dt_fm  67.96827  77.14590  99.94541  88.75399  95.47591 205.1925   100    d  
Run Code Online (Sandbox Code Playgroud)