我一直在努力计算第一季度从第一年到第一季度的增长率.
在excel中,公式看起来像这样((B6-B2)/ B2)*100.
在R中实现这一目标的最佳方法是什么?我知道如何获得不同时期的差异,但不能通过4个时间段的差异来实现它.
这是代码:
date <- c("2000-01-01","2000-04-01", "2000-07-01",
"2000-10-01","2001-01-01","2001-04-01",
"2001-07-01","2001-10-01","2002-01-01",
"2002-04-01","2002-07-01","2002-10-01")
value <- c(1592,1825,1769,1909,2022,2287,2169,2366,2001,2087,2099,2258)
df <- data.frame(date,value)
Run Code Online (Sandbox Code Playgroud)
哪个会生成这个数据框:
date value
1 2000-01-01 1592
2 2000-04-01 1825
3 2000-07-01 1769
4 2000-10-01 1909
5 2001-01-01 2022
6 2001-04-01 2287
7 2001-07-01 2169
8 2001-10-01 2366
9 2002-01-01 2001
10 2002-04-01 2087
11 2002-07-01 2099
12 2002-10-01 2258
Run Code Online (Sandbox Code Playgroud)
eip*_*i10 14
这是使用dplyr
包的选项:
# Convert date column to date format
df$date = as.POSIXct(df$date)
library(dplyr)
library(lubridate)
Run Code Online (Sandbox Code Playgroud)
在下面的代码中,我们首先按月分组,这允许我们分别在每个季度进行操作.该arrange
功能只是确保每个季度内的数据按日期排序.然后我们添加yearOverYear
使用的列来mutate
计算每个季度当前年份与上一年度的比率.
df = df %>% group_by(month=month(date)) %>%
arrange(date) %>%
mutate(yearOverYear=value/lag(value,1))
date value month yearOverYear
1 2000-01-01 1592 1 NA
2 2001-01-01 2022 1 1.2701005
3 2002-01-01 2001 1 0.9896142
4 2000-04-01 1825 4 NA
5 2001-04-01 2287 4 1.2531507
6 2002-04-01 2087 4 0.9125492
7 2000-07-01 1769 7 NA
8 2001-07-01 2169 7 1.2261164
9 2002-07-01 2099 7 0.9677271
10 2000-10-01 1909 10 NA
11 2001-10-01 2366 10 1.2393924
12 2002-10-01 2258 10 0.9543533
Run Code Online (Sandbox Code Playgroud)
如果您希望在添加年度值之后将数据框恢复为整体日期顺序:
df = df %>% group_by(month=month(date)) %>%
arrange(date) %>%
mutate(yearOverYear=value/lag(value,1)) %>%
ungroup() %>% arrange(date)
Run Code Online (Sandbox Code Playgroud)
或使用 data.table
library(data.table) # v1.9.5+
setDT(df)[, .(date, yoy = (value-shift(value))/shift(value)*100),
by = month(date)
][order(date)]
Run Code Online (Sandbox Code Playgroud)
这是一个非常简单的解决方案:
YearOverYear<-function (x,periodsPerYear){
if(NROW(x)<=periodsPerYear){
stop("too few rows")
}
else{
indexes<-1:(NROW(x)-periodsPerYear)
return(c(rep(NA,periodsPerYear),(x[indexes+periodsPerYear]-x[indexes])/x[indexes]))
}
}
> cbind(df,YoY=YearOverYear(df$value,4))
date value YoY
1 2000-01-01 1592 NA
2 2000-04-01 1825 NA
3 2000-07-01 1769 NA
4 2000-10-01 1909 NA
5 2001-01-01 2022 0.27010050
6 2001-04-01 2287 0.25315068
7 2001-07-01 2169 0.22611645
8 2001-10-01 2366 0.23939235
9 2002-01-01 2001 -0.01038576
10 2002-04-01 2087 -0.08745081
11 2002-07-01 2099 -0.03227294
12 2002-10-01 2258 -0.04564666
Run Code Online (Sandbox Code Playgroud)
df$yoy <- c(rep(NA,4),(df$value[5:nrow(df)]-df$value[1:(nrow(df)-4)])/df$value[1:(nrow(df)-4)]*100);
df;
## date value yoy
## 1 2000-01-01 1592 NA
## 2 2000-04-01 1825 NA
## 3 2000-07-01 1769 NA
## 4 2000-10-01 1909 NA
## 5 2001-01-01 2022 27.010050
## 6 2001-04-01 2287 25.315068
## 7 2001-07-01 2169 22.611645
## 8 2001-10-01 2366 23.939235
## 9 2002-01-01 2001 -1.038576
## 10 2002-04-01 2087 -8.745081
## 11 2002-07-01 2099 -3.227294
## 12 2002-10-01 2258 -4.564666
Run Code Online (Sandbox Code Playgroud)