Mig*_*Mig 15 python algorithm set
我有数千行1到100个数字,每行定义一组数字和它们之间的关系.我需要得到一组相关的数字.
小例子:如果我有这7行数据
T1 T2
T3
T4
T5
T6 T1
T5 T4
T3 T4 T7
Run Code Online (Sandbox Code Playgroud)
我需要一个不那么慢的算法来知道这里的集合是:
T1 T2 T6 (because T1 is related with T2 in the first line and T1 related with T6 in the line 5)
T3 T4 T5 T7 (because T5 is with T4 in line 6 and T3 is with T4 and T7 in line 7)
Run Code Online (Sandbox Code Playgroud)
但是当你拥有非常大的集合时,在每个大集合中搜索T(x)都会非常缓慢,并且需要集合等等......
你是否有一种暗示以不那么强力的方式做到这一点?
我试图用Python做到这一点.
Jim*_*wis 14
将数字T1,T2等视为图顶点.在一条线上出现的任何两个数字由边连接.那你的问题就等于找到这个图中所有连接的组件.您可以通过从T1开始,然后执行广度优先或深度优先搜索来查找从该点可到达的所有顶点.将所有这些顶点标记为属于等价类T1.然后找到下一个未标记的顶点Ti,找到从那里可到达的所有尚未标记的节点,并将它们标记为属于等价类Ti.继续,直到标记所有顶点.
对于具有n个顶点和e边的图,该算法需要O(e)时间和空间来构建邻接列表,并且O(n)时间和空间用于在构建图结构后识别所有连接的组件.
Joh*_*hin 14
一旦构建了数据结构,您想要针对它运行哪些查询?向我们展示您现有的代码.什么是T(x)?你谈的是"数字组",但你的样本数据显示T1,T2等; 请解释.
你读过这个:http://en.wikipedia.org/wiki/Disjoint-set_data_structure
试着看看这个Python实现:http://code.activestate.com/recipes/215912-union-find-data-structure/
或者你可以自己抨击一些相当简单易懂的东西,例如
[更新:全新代码]
class DisjointSet(object):
def __init__(self):
self.leader = {} # maps a member to the group's leader
self.group = {} # maps a group leader to the group (which is a set)
def add(self, a, b):
leadera = self.leader.get(a)
leaderb = self.leader.get(b)
if leadera is not None:
if leaderb is not None:
if leadera == leaderb: return # nothing to do
groupa = self.group[leadera]
groupb = self.group[leaderb]
if len(groupa) < len(groupb):
a, leadera, groupa, b, leaderb, groupb = b, leaderb, groupb, a, leadera, groupa
groupa |= groupb
del self.group[leaderb]
for k in groupb:
self.leader[k] = leadera
else:
self.group[leadera].add(b)
self.leader[b] = leadera
else:
if leaderb is not None:
self.group[leaderb].add(a)
self.leader[a] = leaderb
else:
self.leader[a] = self.leader[b] = a
self.group[a] = set([a, b])
data = """T1 T2
T3 T4
T5 T1
T3 T6
T7 T8
T3 T7
T9 TA
T1 T9"""
# data is chosen to demonstrate each of 5 paths in the code
from pprint import pprint as pp
ds = DisjointSet()
for line in data.splitlines():
x, y = line.split()
ds.add(x, y)
print
print x, y
pp(ds.leader)
pp(ds.group)
Run Code Online (Sandbox Code Playgroud)
这是最后一步的输出:
T1 T9
{'T1': 'T1',
'T2': 'T1',
'T3': 'T3',
'T4': 'T3',
'T5': 'T1',
'T6': 'T3',
'T7': 'T3',
'T8': 'T3',
'T9': 'T1',
'TA': 'T1'}
{'T1': set(['T1', 'T2', 'T5', 'T9', 'TA']),
'T3': set(['T3', 'T4', 'T6', 'T7', 'T8'])}
Run Code Online (Sandbox Code Playgroud)
您可以使用联合查找数据结构来实现此目标。
这种算法的伪代码如下:
func find( var element )
while ( element is not the root ) element = element's parent
return element
end func
func union( var setA, var setB )
var rootA = find( setA ), rootB = find( setB )
if ( rootA is equal to rootB ) return
else
set rootB as rootA's parent
end func
Run Code Online (Sandbox Code Playgroud)
(摘自http://www.algorithmist.com/index.php/Union_Find)
归档时间: |
|
查看次数: |
22931 次 |
最近记录: |