Sou*_*mya 7 arrays vhdl multidimensional-array
我需要使用多维数组来表示我的设计中的矩阵。我已经尝试了两个可用的选项:
声明数组数组
type t11 is array (0 to c1_r2) of std_logic_vector(31 downto 0);
type t1 is array (0 to r1) of t11; --r1*c1_r2 matrix
Run Code Online (Sandbox Code Playgroud)多维数组。
type matrix is array (natural range <>, natural range <>)
of std_logic_vector(31 downto 0);
Run Code Online (Sandbox Code Playgroud)但是,在这两种情况下,我在 xilinx 中的后期综合模拟都给了我错误“切片名称仅允许在一维数组上使用”。在可综合 vhdl 设计中使用多维数组的正确方法是什么?欢迎任何意见。
我正在使用 Xilinx ISE 附带的 XST 合成器。我正在索引 i 和 j,因为我的矩阵维度是 m * n * 32。
我在实体中的净 a_in
a_in: in matrix (0 to size - 1, 0 to size - 1);
Run Code Online (Sandbox Code Playgroud)
被修改为
a_in : in STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 );
Run Code Online (Sandbox Code Playgroud)
在我的程序中,我从矩阵中访问 k 和 m 的两个生成语句中的值,如下所示:
add_instx: add
port map (
a => a_in(k,m),
b => b_in(k,m),
clk => clk,
sclr => clr,
ce => start,
result => temp_out(k,m),
rdy => add_over(k,m)
);
Run Code Online (Sandbox Code Playgroud)
我对 a_in 的测试台输入给出为
a_in <= (("00111111100000000000000000000000", "00000000000000000000000000000000"),("00000000000000000000000000000000", "00111111100000000000000000000000"));
Run Code Online (Sandbox Code Playgroud)
我的综合生成了以下类型的警告:Xst:387 - 连接到网络的 KEEP 属性可能会阻碍时序优化。您可以通过删除此属性获得更好的结果。但是,我没有设置任何保留属性,我不确定在哪里查找此属性。请帮忙!非常感谢。
我很抱歉没有添加完整的代码。请在下面找到代码和包。
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.NUMERIC_STD.ALL;
use work.mat_pak.all;
entity newproj is
generic ( size: natural := 2 );
port (
clk: in std_logic;
clr: in std_logic;
start: in std_logic;
a_in: in matrix (0 to size - 1, 0 to size - 1);
b_in: in matrix (0 to size - 1, 0 to size - 1);
aplusb: out matrix (0 to size - 1, 0 to size - 1);
parallel_add_done: out std_logic);
end newproj;
architecture Behavioral of newproj is
COMPONENT add --This is a 32 bit floating point add IP core
PORT (
a : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
b : IN STD_LOGIC_VECTOR(31 DOWNTO 0);
clk : IN STD_LOGIC;
sclr : IN STD_LOGIC;
ce : IN STD_LOGIC;
result : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
rdy: OUT STD_LOGIC
);
END COMPONENT;
signal temp_out: matrix (0 to size - 1, 0 to size - 1) := (others => (others => (others => '0')));
signal add_over: bmatrix (0 to size - 1, 0 to size - 1) := (others => (others => '0'));
begin
g0:
for k in 0 to mat_dim generate
g0x:
for m in 0 to mat_dim generate
add_instx: add
port map (
a => a_in(k,m),
b => b_in(k,m),
clk => clk,
sclr => clr,
ce => start,
result => temp_out(k,m),
rdy => add_over(k,m)
);
end generate;
end generate;
aplusb <= temp_out;
p1_add:
process (add_over)
variable check_all_done: std_logic;
begin
check_all_done := '1';
for k in 0 to mat_dim loop
for m in 0 to mat_dim loop
check_all_done := check_all_done and add_over(k)(m);
end loop;
end loop;
parallel_add_done <= check_all_done;
end process;
end Behavioral;
Run Code Online (Sandbox Code Playgroud)
这里使用的包是:
library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.NUMERIC_STD.ALL;
package mat_pak is
CONSTANT mat_dim : natural := 2;
type matrix is array (natural range <>, natural range <>)
of std_logic_vector(31 downto 0);
type bmatrix is array (natural range <>, natural range <>)
of std_logic;
end mat_pak;
Run Code Online (Sandbox Code Playgroud)
综合后仿真模型文件在排序和数据类型方面自行修改了实体。实体如下所示:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
library UNISIM;
use UNISIM.VCOMPONENTS.ALL;
use UNISIM.VPKG.ALL;
entity newproj is
port (
clk : in STD_LOGIC := 'X';
clr : in STD_LOGIC := 'X';
start : in STD_LOGIC := 'X';
parallel_add_done : out STD_LOGIC;
a_in : in STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 );
b_in : in STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 );
aplusb : out STD_LOGIC_VECTOR3 ( 1 downto 0 , 1 downto 0 , 31 downto 0 )
);
end newproj;
Run Code Online (Sandbox Code Playgroud)
您的第一个数组不是多维数组,而是 2 次嵌套的一维数组。
你的例子:
type t11 is array (0 to c1_r2) of std_logic_vector(31 downto 0);
type t1 is array (0 to r1) of t11;
Run Code Online (Sandbox Code Playgroud)
这个定义更明确:
subtype t_dim1 is std_logic_vector(31 downto 0);
type t_dim1_vector is array(natural range <>) of t_dim1;
subtype t_dim2 is t_dim1_vector(0 to c1_r2);
type t_dim3_vector is array(natural range <>) of t_dim2;
subtype t_dim3 is t_dim3_vector(0 to r1);
Run Code Online (Sandbox Code Playgroud)
您可以通过索引每个维度来访问此结构:
signal matrix3 : t_dim3;
signal matrix2 : t_dim2;
signal matrix1 : t_dim1;
signal slv : std_logic_vector(31 downto 0);
signal sl : std_logic;
matrix2 <= matrix3(i);
matrix1 <= matrix2(j);
matrix1 <= matrix3(i)(j);
slv <= matrix3(i)(j);
sl <= matrix3(i)(j)(k);
Run Code Online (Sandbox Code Playgroud)
您还可以对每个维度进行切片:
signal matrix3 : t_dim3;
signal slice3 : t_dim3_vector(0 to 3);
signal slice2 : t_dim2_vector(0 to 3);
signal slv : std_logic_vector(7 downto 0);
slice3 <= matrix3(4 to 7);
slice2 <= matrix3(i)(2 to 5);
slice2 <= slice3(i)(2 to 5);
slv <= matrix3(i)(j)(15 downto 8);
Run Code Online (Sandbox Code Playgroud)
你的第二个例子:
type matrix is array (natural range <>, natural range <>) of std_logic_vector(31 downto 0);
Run Code Online (Sandbox Code Playgroud)
这是一个带有嵌套一维数组的二维数组。可以按如下方式访问此结构:
signal mat : matrix(0 to r1, p to c1_r2);
signal slv : std_logic_vector(31 downto 0);
signal sl : std_logic;
slv <= mat(i, j);
sl <= mat(i, j)(k);
Run Code Online (Sandbox Code Playgroud)
由于 VHDL-2008 切片也允许在多维数组中使用。在 VHDL-2008 之前,您必须为这项工作使用函数。
查看我的PoC.vectors包,了解如何处理一维和多维数组。