当用"pandas.read_hdf()"读取巨大的HDF5文件时,为什么我仍然得到MemoryError,即使我通过指定chunksize来读取块?

Ewa*_*wan 13 python hdf5 pandas

问题描述:

我使用python pandas读取一些大的CSV文件并将其存储在HDF5文件中,生成的HDF5文件大约为10GB. 阅读时会出现问题.即使我试图以块的形式读回来,我仍然得到MemoryError.

以下是我如何创建HDF5文件:

import glob, os
import pandas as pd

hdf = pd.HDFStore('raw_sample_storage2.h5')

os.chdir("C:/RawDataCollection/raw_samples/PLB_Gate")
for filename in glob.glob("RD_*.txt"):
    raw_df = pd.read_csv(filename,
                         sep=' ',
                         header=None, 
                         names=['time', 'GW_time', 'node_id', 'X', 'Y', 'Z', 'status', 'seq', 'rssi', 'lqi'], 
                         dtype={'GW_time': uint32, 'node_id': uint8, 'X': uint16, 'Y': uint16, 'Z':uint16, 'status': uint8, 'seq': uint8, 'rssi': int8, 'lqi': uint8},
                         parse_dates=['time'], 
                         date_parser=dateparse, 
                         chunksize=50000, 
                         skip_blank_lines=True)
    for chunk in raw_df:
        hdf.append('raw_sample_all', chunk, format='table', data_columns = True, index = True, compression='blosc', complevel=9)
Run Code Online (Sandbox Code Playgroud)

以下是我如何尝试以块的形式阅读它:

for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
    print(df.head(1))
Run Code Online (Sandbox Code Playgroud)

这是我收到的错误消息:

---------------------------------------------------------------------------
MemoryError                               Traceback (most recent call last)
<ipython-input-7-ef278566a16b> in <module>()
----> 1 for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', chunksize=300000):
      2     print(df.head(1))

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_hdf(path_or_buf, key, **kwargs)
    321         store = HDFStore(path_or_buf, **kwargs)
    322         try:
--> 323             return f(store, True)
    324         except:
    325 

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in <lambda>(store, auto_close)
    303 
    304     f = lambda store, auto_close: store.select(
--> 305         key, auto_close=auto_close, **kwargs)
    306 
    307     if isinstance(path_or_buf, string_types):

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select(self, key, where, start, stop, columns, iterator, chunksize, auto_close, **kwargs)
    663                            auto_close=auto_close)
    664 
--> 665         return it.get_result()
    666 
    667     def select_as_coordinates(

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in get_result(self, coordinates)
   1346                     "can only use an iterator or chunksize on a table")
   1347 
-> 1348             self.coordinates = self.s.read_coordinates(where=self.where)
   1349 
   1350             return self

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in read_coordinates(self, where, start, stop, **kwargs)
   3545         self.selection = Selection(
   3546             self, where=where, start=start, stop=stop, **kwargs)
-> 3547         coords = self.selection.select_coords()
   3548         if self.selection.filter is not None:
   3549             for field, op, filt in self.selection.filter.format():

C:\Anaconda\lib\site-packages\pandas\io\pytables.pyc in select_coords(self)
   4507             return self.coordinates
   4508 
-> 4509         return np.arange(start, stop)
   4510 
   4511 # utilities ###

MemoryError: 
Run Code Online (Sandbox Code Playgroud)

我的python环境:

INSTALLED VERSIONS
------------------
commit: None
python: 2.7.3.final.0
python-bits: 32
OS: Windows
OS-release: 7
machine: x86
processor: x86 Family 6 Model 42 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: None

pandas: 0.15.2
nose: 1.3.4
Cython: 0.22
numpy: 1.9.2
scipy: 0.15.1
statsmodels: 0.6.1
IPython: 3.0.0
sphinx: 1.2.3
patsy: 0.3.0
dateutil: 2.4.1
pytz: 2015.2
bottleneck: None
tables: 3.1.1
numexpr: 2.3.1
matplotlib: 1.4.3
openpyxl: 1.8.5
xlrd: 0.9.3
xlwt: 0.7.5
xlsxwriter: 0.6.7
lxml: 3.4.2
bs4: 4.3.2
html5lib: None
httplib2: None
apiclient: None
rpy2: None
sqlalchemy: 0.9.9
pymysql: None
psycopg2: None
Run Code Online (Sandbox Code Playgroud)

编辑1:

在执行read_hdf()之后,MemoryError发生了大约半小时,同时我检查了taskmgr,并且CPU活动很少,总使用的内存从未超过2.2G.在执行代码之前它大约是2.1 GB.所以无论加载到RAM中的pandas read_hdf()是否小于100 MB (我有4G RAM,而我的32位Windows系统只能使用2.7G,我将其余部分用于RAM磁盘)

这是hdf文件信息:

In [2]:
hdf = pd.HDFStore('raw_sample_storage2.h5')
hdf

Out[2]:
<class 'pandas.io.pytables.HDFStore'>
File path: C:/RawDataCollection/raw_samples/PLB_Gate/raw_sample_storage2.h5
/raw_sample_all            frame_table  (typ->appendable,nrows->308581091,ncols->10,indexers->[index],dc->[time,GW_time,node_id,X,Y,Z,status,seq,rssi,lqi])
Run Code Online (Sandbox Code Playgroud)

此外,我可以通过指示'start'和'stop'而不是'chunksize'来读取hdf文件的一部分:

%%time
df = pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000)
print df.info()
print(df.head(5))
Run Code Online (Sandbox Code Playgroud)

执行只需4秒,输出为:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 300000 entries, 0 to 49999
Data columns (total 10 columns):
time       300000 non-null datetime64[ns]
GW_time    300000 non-null uint32
node_id    300000 non-null uint8
X          300000 non-null uint16
Y          300000 non-null uint16
Z          300000 non-null uint16
status     300000 non-null uint8
seq        300000 non-null uint8
rssi       300000 non-null int8
lqi        300000 non-null uint8
dtypes: datetime64[ns](1), int8(1), uint16(3), uint32(1), uint8(4)
memory usage: 8.9 MB
None
                 time   GW_time  node_id      X      Y      Z  status  seq  \
0 2013-10-22 17:20:58  39821761        3  20010  21716  22668       0   33   
1 2013-10-22 17:20:58  39821824        4  19654  19647  19241       0   33   
2 2013-10-22 17:20:58  39821888        1  16927  21438  22722       0   34   
3 2013-10-22 17:20:58  39821952        2  17420  22882  20440       0   34   
4 2013-10-22 17:20:58  39822017        3  20010  21716  22668       0   34   

   rssi  lqi  
0   -43   49  
1   -72   47  
2   -46   48  
3   -57   46  
4   -42   50  
Wall time: 4.26 s
Run Code Online (Sandbox Code Playgroud)

注意300000行只占用8.9 MB RAM,我尝试使用chunksize和start和stop:

for df in pd.read_hdf('raw_sample_storage2.h5','raw_sample_all', start=0,stop=300000,chunksize = 3000):
    print df.info()
    print(df.head(5))
Run Code Online (Sandbox Code Playgroud)

发生相同的MemoryError.

我不明白这里发生了什么,如果内部机制以某种方式忽略chunksize/start/stop并试图将整个内容加载到RAM中,那么当MemoryError发生时,RAM使用率(仅100 MB)几乎没有增加?为什么执行需要半个小时才能在流程开始时达到错误而没有明显的CPU使用率?

Jef*_*eff 13

所以迭代器主要是为了处理一个where子句而构建的.PyTables返回子句为True的指标列表.这些是行号.在这种情况下,没有where子句,但我们仍然使用索引器,在这种情况下,索引器只是np.arange在行列表中.

300MM行需要2.2GB.这对于32位的Windows来说太多了(通常最大约为1GB).在64位这将是没有问题的.

In [1]: np.arange(0,300000000).nbytes/(1024*1024*1024.0)
Out[1]: 2.2351741790771484
Run Code Online (Sandbox Code Playgroud)

所以这应该通过切片语义来处理,这会使这只需要很少的内存.期开在这里.

所以我建议这样做.这里索引器是直接计算的,这提供了迭代器语义.

In [1]: df = DataFrame(np.random.randn(1000,2),columns=list('AB'))

In [2]: df.to_hdf('test.h5','df',mode='w',format='table',data_columns=True)

In [3]: store = pd.HDFStore('test.h5')

In [4]: nrows = store.get_storer('df').nrows

In [6]: chunksize = 100

In [7]: for i in xrange(nrows//chunksize + 1):
            chunk = store.select('df',
                                 start=i*chunksize,
                                 stop=(i+1)*chunksize)
            # work on the chunk    

In [8]: store.close()
Run Code Online (Sandbox Code Playgroud)