rns*_*nso 16 lambda regression r glmnet coefficients
我使用以下代码与glmnet:
> library(glmnet)
> fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1])
> plot(fit, xvar='lambda')
Run Code Online (Sandbox Code Playgroud)
但是,我想打印最好的Lambda系数,就像在岭回归中一样.我看到以下适合的结构:
> str(fit)
List of 12
$ a0 : Named num [1:79] 20.1 21.6 23.2 24.7 26 ...
..- attr(*, "names")= chr [1:79] "s0" "s1" "s2" "s3" ...
$ beta :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
.. ..@ i : int [1:561] 0 4 0 4 0 4 0 4 0 4 ...
.. ..@ p : int [1:80] 0 0 2 4 6 8 10 12 14 16 ...
.. ..@ Dim : int [1:2] 10 79
.. ..@ Dimnames:List of 2
.. .. ..$ : chr [1:10] "cyl" "disp" "hp" "drat" ...
.. .. ..$ : chr [1:79] "s0" "s1" "s2" "s3" ...
.. ..@ x : num [1:561] -0.0119 -0.4578 -0.1448 -0.7006 -0.2659 ...
.. ..@ factors : list()
$ df : int [1:79] 0 2 2 2 2 2 2 2 2 3 ...
$ dim : int [1:2] 10 79
$ lambda : num [1:79] 5.15 4.69 4.27 3.89 3.55 ...
$ dev.ratio: num [1:79] 0 0.129 0.248 0.347 0.429 ...
$ nulldev : num 1126
$ npasses : int 1226
$ jerr : int 0
$ offset : logi FALSE
$ call : language glmnet(x = as.matrix(mtcars[-1]), y = mtcars[, 1])
$ nobs : int 32
- attr(*, "class")= chr [1:2] "elnet" "glmnet"
Run Code Online (Sandbox Code Playgroud)
但我无法获得最好的Lambda和相应的系数.谢谢你的帮助.
Jot*_*ota 16
试试这个:
fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1],
lambda=cv.glmnet(as.matrix(mtcars[-1]), mtcars[,1])$lambda.1se)
coef(fit)
Run Code Online (Sandbox Code Playgroud)
或者您可以在以下位置指定lambda值coef
:
fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1])
coef(fit, s = cv.glmnet(as.matrix(mtcars[-1]), mtcars[,1])$lambda.1se)
Run Code Online (Sandbox Code Playgroud)
你需要挑选一个"最好的"lambda,这lambda.1se
是一个合理的,或合理的,可供挑选.但是你可以使用cv.glmnet(as.matrix(mtcars[-1]), mtcars[,1])$lambda.min
或者你认为的任何其他lambda值对你来说是"最好的".