Mar*_*lus 5 lua for-loop matrix deep-learning torch
我需要在torch7中初始化具有索引相关函数的3D张量,即
func = function(i,j,k) --i, j is the index of an element in the tensor
return i*j*k --do operations within func which're dependent of i, j
end
Run Code Online (Sandbox Code Playgroud)
然后我初始化一个像这样的3D张量A:
for i=1,A:size(1) do
for j=1,A:size(2) do
for k=1,A:size(3) do
A[{i,j,k}] = func(i,j,k)
end
end
end
Run Code Online (Sandbox Code Playgroud)
但是这段代码运行得非常慢,我发现它占总运行时间的92%.有没有更有效的方法来初始化火炬7中的3D张量?
请参阅文档 Tensor:apply
这些函数将函数应用于调用方法的张量的每个元素(self).这些方法比在Lua中使用for循环要快得多.
docs中的示例基于其索引i(在内存中)初始化2D数组.下面是3个维度的扩展示例,低于ND张量的维度.在我的机器上使用apply方法要快得多:
require 'torch'
A = torch.Tensor(100, 100, 1000)
B = torch.Tensor(100, 100, 1000)
function func(i,j,k)
return i*j*k
end
t = os.clock()
for i=1,A:size(1) do
for j=1,A:size(2) do
for k=1,A:size(3) do
A[{i, j, k}] = i * j * k
end
end
end
print("Original time:", os.difftime(os.clock(), t))
t = os.clock()
function forindices(A, func)
local i = 1
local j = 1
local k = 0
local d3 = A:size(3)
local d2 = A:size(2)
return function()
k = k + 1
if k > d3 then
k = 1
j = j + 1
if j > d2 then
j = 1
i = i + 1
end
end
return func(i, j, k)
end
end
B:apply(forindices(A, func))
print("Apply method:", os.difftime(os.clock(), t))
Run Code Online (Sandbox Code Playgroud)
编辑
这适用于任何Tensor对象:
function tabulate(A, f)
local idx = {}
local ndims = A:dim()
local dim = A:size()
idx[ndims] = 0
for i=1, (ndims - 1) do
idx[i] = 1
end
return A:apply(function()
for i=ndims, 0, -1 do
idx[i] = idx[i] + 1
if idx[i] <= dim[i] then
break
end
idx[i] = 1
end
return f(unpack(idx))
end)
end
-- usage for 3D case.
tabulate(A, function(i, j, k) return i * j * k end)
Run Code Online (Sandbox Code Playgroud)