zor*_*ork 7 algorithm filtering scala group-by apache-spark
有两列的表books和readers这些书籍,其中books和readers分别是图书和阅读器的ID,:
books readers
1: 1 30
2: 2 10
3: 3 20
4: 1 20
5: 1 10
6: 2 30
Run Code Online (Sandbox Code Playgroud)
记录book = 1, reader = 30表示id = 1用户已阅读该书id = 30.对于每本书对,我需要计算阅读这两本书的读者数量,使用此算法:
for each book
for each reader of the book
for each other_book in books of the reader
increment common_reader_count ((book, other_book), cnt)
Run Code Online (Sandbox Code Playgroud)
使用该算法的优点是,与将所有书籍组合计数为2相比,它需要少量操作.
为了实现上述算法,我将这些数据组织成两组:1)用书键入,包含每本书的读者的RDD和2)由读者键入的RDD,包含由每个读者读取的书籍的RDD,例如在以下程序中:
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.log4j.Logger
import org.apache.log4j.Level
object Small {
case class Book(book: Int, reader: Int)
case class BookPair(book1: Int, book2: Int, cnt:Int)
val recs = Array(
Book(book = 1, reader = 30),
Book(book = 2, reader = 10),
Book(book = 3, reader = 20),
Book(book = 1, reader = 20),
Book(book = 1, reader = 10),
Book(book = 2, reader = 30))
def main(args: Array[String]) {
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
// set up environment
val conf = new SparkConf()
.setAppName("Test")
.set("spark.executor.memory", "2g")
val sc = new SparkContext(conf)
val data = sc.parallelize(recs)
val bookMap = data.map(r => (r.book, r))
val bookGrps = bookMap.groupByKey
val readerMap = data.map(r => (r.reader, r))
val readerGrps = readerMap.groupByKey
// *** Calculate book pairs
// Iterate book groups
val allBookPairs = bookGrps.map(bookGrp => bookGrp match {
case (book, recIter) =>
// Iterate user groups
recIter.toList.map(rec => {
// Find readers for this book
val aReader = rec.reader
// Find all books (including this one) that this reader read
val allReaderBooks = readerGrps.filter(readerGrp => readerGrp match {
case (reader2, recIter2) => reader2 == aReader
})
val bookPairs = allReaderBooks.map(readerTuple => readerTuple match {
case (reader3, recIter3) => recIter3.toList.map(rec => ((book, rec.book), 1))
})
bookPairs
})
})
val x = allBookPairs.flatMap(identity)
val y = x.map(rdd => rdd.first)
val z = y.flatMap(identity)
val p = z.reduceByKey((cnt1, cnt2) => cnt1 + cnt2)
val result = p.map(bookPair => bookPair match {
case((book1, book2),cnt) => BookPair(book1, book2, cnt)
} )
val resultCsv = result.map(pair => resultToStr(pair))
resultCsv.saveAsTextFile("./result.csv")
}
def resultToStr(pair: BookPair): String = {
val sep = "|"
pair.book1 + sep + pair.book2 + sep + pair.cnt
}
}
Run Code Online (Sandbox Code Playgroud)
这种实现实际上导致了不同的低效算法!:
for each book
find each reader of the book scanning all readers every time!
for each other_book in books of the reader
increment common_reader_count ((book, other_book), cnt)
Run Code Online (Sandbox Code Playgroud)
这与上面讨论的算法的主要目标相矛盾,因为它不是减少,而是增加了操作的数量.查找用户书籍需要过滤每本书的所有用户.因此操作次数~N*M其中N - 用户数和M - 书数.
问题:
filter exception我无法弄清楚的原因.有任何想法吗?请看下面的例外日志:
15/05/29 18:24:05 WARN util.Utils: Your hostname, localhost.localdomain resolves to a loopback address: 127.0.0.1; using 10.0.2.15 instead (on interface eth0)
15/05/29 18:24:05 WARN util.Utils: Set SPARK_LOCAL_IP if you need to bind to another address
15/05/29 18:24:09 INFO slf4j.Slf4jLogger: Slf4jLogger started
15/05/29 18:24:10 INFO Remoting: Starting remoting
15/05/29 18:24:10 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@10.0.2.15:38910]
15/05/29 18:24:10 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkDriver@10.0.2.15:38910]
15/05/29 18:24:12 ERROR executor.Executor: Exception in task 0.0 in stage 6.0 (TID 4)
java.lang.NullPointerException
at org.apache.spark.rdd.RDD.filter(RDD.scala:282)
at Small$$anonfun$4$$anonfun$apply$1.apply(Small.scala:58)
at Small$$anonfun$4$$anonfun$apply$1.apply(Small.scala:54)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.immutable.List.foreach(List.scala:318)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at Small$$anonfun$4.apply(Small.scala:54)
at Small$$anonfun$4.apply(Small.scala:51)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:327)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.util.collection.ExternalAppendOnlyMap.insertAll(ExternalAppendOnlyMap.scala:137)
at org.apache.spark.Aggregator.combineValuesByKey(Aggregator.scala:58)
at org.apache.spark.shuffle.hash.HashShuffleWriter.write(HashShuffleWriter.scala:55)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:54)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:177)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:744)
Run Code Online (Sandbox Code Playgroud)
更新:
这段代码:
val df = sc.parallelize(Array((1,30),(2,10),(3,20),(1,10)(2,30))).toDF("books","readers")
val results = df.join(
df.select($"books" as "r_books", $"readers" as "r_readers"),
$"readers" === $"r_readers" and $"books" < $"r_books"
)
.groupBy($"books", $"r_books")
.agg($"books", $"r_books", count($"readers"))
Run Code Online (Sandbox Code Playgroud)
给出以下结果:
books r_books COUNT(readers)
1 2 2
Run Code Online (Sandbox Code Playgroud)
所以COUNT这里有两本书(这里是1和2)被一起阅读(对数).
如果将原始RDD转换为DataFrame,这种事情会容易得多:
val df = sc.parallelize(
Array((1,30),(2,10),(3,20),(1,10), (2,30))
).toDF("books","readers")
Run Code Online (Sandbox Code Playgroud)
完成后,只需在DataFrame上自行加入以制作图书对,然后计算读取每个图书对的读者数量:
val results = df.join(
df.select($"books" as "r_books", $"readers" as "r_readers"),
$"readers" === $"r_readers" and $"books" < $"r_books"
).groupBy(
$"books", $"r_books"
).agg(
$"books", $"r_books", count($"readers")
)
Run Code Online (Sandbox Code Playgroud)
至于有关该联接的其他说明,请注意我正在df重新加入自身 - 自我加入:df.join(df.select(...), ...).你要做的是将书#1 $"books"- 与第二本书 - $"r_books"从同一个读者 - 拼接在一起$"reader" === $"r_reader".但是,如果你只加入$"reader" === $"r_reader",你会得到同样的书加入自己.相反,我$"books" < $"r_books"用来确保书对中的排序总是如此(<lower_id>,<higher_id>).
完成连接后,您将获得一个DataFrame,其中包含每个图书对的每个读者的行.这些groupBy和agg函数实际计算每本书配对的读者数量.
顺便提一下,如果读者两次读同一本书,我相信你最终会重复计算,这可能是也可能不是你想要的.如果这不是你想要的只是改变count($"readers")来countDistinct($"readers").
如果你想了解更多关于agg函数count()和countDistinct()其他一些有趣的东西,请查看org.apache.spark.sql.functions的scaladoc.