Raf*_*afa 37 python dataframe pandas
对于以下数据帧:
StationID HoursAhead BiasTemp
SS0279 0 10
SS0279 1 20
KEOPS 0 0
KEOPS 1 5
BB 0 5
BB 1 5
Run Code Online (Sandbox Code Playgroud)
我想得到类似的东西:
StationID BiasTemp
SS0279 15
KEOPS 2.5
BB 5
Run Code Online (Sandbox Code Playgroud)
我知道我可以编写这样的脚本来获得所需的结果:
def transform_DF(old_df,col):
list_stations = list(set(old_df['StationID'].values.tolist()))
header = list(old_df.columns.values)
header.remove(col)
header_new = header
new_df = pandas.DataFrame(columns = header_new)
for i,station in enumerate(list_stations):
general_results = old_df[(old_df['StationID'] == station)].describe()
new_row = []
for column in header_new:
if column in ['StationID']:
new_row.append(station)
continue
new_row.append(general_results[column]['mean'])
new_df.loc[i] = new_row
return new_df
Run Code Online (Sandbox Code Playgroud)
但我想知道大熊猫是否有更直接的东西.
Zer*_*ero 51
你可以groupby
继续StationID
然后mean()
继续BiasTemp
.要输出Dataframe
,请使用as_index=False
In [4]: df.groupby('StationID', as_index=False)['BiasTemp'].mean()
Out[4]:
StationID BiasTemp
0 BB 5.0
1 KEOPS 2.5
2 SS0279 15.0
Run Code Online (Sandbox Code Playgroud)
没有as_index=False
,它返回一个Series
代替
In [5]: df.groupby('StationID')['BiasTemp'].mean()
Out[5]:
StationID
BB 5.0
KEOPS 2.5
SS0279 15.0
Name: BiasTemp, dtype: float64
Run Code Online (Sandbox Code Playgroud)
groupby
在这个pydata 教程中阅读更多相关内容.
这groupby
是为了什么:
In [117]:
df.groupby('StationID')['BiasTemp'].mean()
Out[117]:
StationID
BB 5.0
KEOPS 2.5
SS0279 15.0
Name: BiasTemp, dtype: float64
Run Code Online (Sandbox Code Playgroud)
在这里,我们通过'StationID'列进行分组,然后我们访问'BiasTemp'列并调用mean
它
有关此功能的文档中有一节.