use*_*759 3 c algorithm floating-point floating-accuracy
我很难理解如何实现Payne和Hanek发布的范围缩减算法(三角函数的范围缩减)
我见过这个图书馆:http: //www.netlib.org/fdlibm/
但它看起来如此扭曲,我所创立的所有理论解释都太简单了,无法提供实现.
有一些好的......好的...很好的解释吗?
nju*_*ffa 10
通过Payne-Hanek算法对三角函数进行参数约简实际上非常简单.与其他参数减少方案一样,计算n = round_nearest (x / (?/2))
,然后通过计算余数x - n * ?/2
.通过计算实现更高的效率n = round_nearest (x * (2/?))
.
Payne-Hanek的关键观察是,在计算剩余的x - n * ?/2
使用完整的未接地产品时,前导位在减法期间取消,因此我们不需要计算这些.我们留下的问题是根据的大小找到正确的起点(非零位)x
.如果x
接近倍数?/2
,可能会有额外的取消,这是有限的.人们可以查阅文献,了解在这种情况下取消的附加位数的上限.由于相对较高的计算成本,Payne-Hanek通常仅用于幅度较大的参数,这具有额外的好处,即在减法期间,原始参数的比特x
在相关比特位置中为零.
下面我展示sinf()
了我最近编写的用于单精度的详尽测试的C99代码,其中包含减少的慢速路径中的Payne-Hanek减少,请参阅trig_red_slowpath_f()
.注意,为了实现忠实的舍入sinf()
,必须增加参数减少以将减少的参数作为float
头/尾方式的两个操作数返回.
可以进行各种设计选择,下面我选择了基于整数的计算,以便最大限度地减少所需位的存储2/?
.使用浮点计算和重叠对或浮点数的三元组来存储比特的2/?
实现也很常见.
/* 190 bits of 2/pi for Payne-Hanek style argument reduction. */
static const unsigned int two_over_pi_f [] =
{
0x00000000,
0x28be60db,
0x9391054a,
0x7f09d5f4,
0x7d4d3770,
0x36d8a566,
0x4f10e410
};
float trig_red_slowpath_f (float a, int *quadrant)
{
unsigned long long int p;
unsigned int ia, hi, mid, lo, i;
int e, q;
float r;
ia = (unsigned int)(fabsf (frexpf (a, &e)) * 0x1.0p32f);
/* extract 96 relevant bits of 2/pi based on magnitude of argument */
i = (unsigned int)e >> 5;
e = (unsigned int)e & 31;
if (e) {
hi = (two_over_pi_f [i+0] << e) | (two_over_pi_f [i+1] >> (32 - e));
mid = (two_over_pi_f [i+1] << e) | (two_over_pi_f [i+2] >> (32 - e));
lo = (two_over_pi_f [i+2] << e) | (two_over_pi_f [i+3] >> (32 - e));
} else {
hi = two_over_pi_f [i+0];
mid = two_over_pi_f [i+1];
lo = two_over_pi_f [i+2];
}
/* compute product x * 2/pi in 2.62 fixed-point format */
p = (unsigned long long int)ia * lo;
p = (unsigned long long int)ia * mid + (p >> 32);
p = ((unsigned long long int)(ia * hi) << 32) + p;
/* round quotient to nearest */
q = (int)(p >> 62); // integral portion = quadrant<1:0>
p = p & 0x3fffffffffffffffULL; // fraction
if (p & 0x2000000000000000ULL) { // fraction >= 0.5
p = p - 0x4000000000000000ULL; // fraction - 1.0
q = q + 1;
}
/* compute remainder of x / (pi/2) */
double d;
d = (double)(long long int)p;
d = d * 0x1.921fb54442d18p-62; // 1.5707963267948966 * 0x1.0p-62
r = (float)d;
if (a < 0.0f) {
r = -r;
q = -q;
}
*quadrant = q;
return r;
}
/* Like rintf(), but -0.0f -> +0.0f, and |a| must be <= 0x1.0p+22 */
float quick_and_dirty_rintf (float a)
{
float cvt_magic = 0x1.800000p+23f;
return (a + cvt_magic) - cvt_magic;
}
/* Argument reduction for trigonometric functions that reduces the argument
to the interval [-PI/4, +PI/4] and also returns the quadrant. It returns
-0.0f for an input of -0.0f
*/
float trig_red_f (float a, float switch_over, int *q)
{
float j, r;
if (fabsf (a) > switch_over) {
/* Payne-Hanek style reduction. M. Payne and R. Hanek, Radian reduction
for trigonometric functions. SIGNUM Newsletter, 18:19-24, 1983
*/
r = trig_red_slowpath_f (a, q);
} else {
/* FMA-enhanced Cody-Waite style reduction. W. J. Cody and W. Waite,
"Software Manual for the Elementary Functions", Prentice-Hall 1980
*/
j = 0x1.45f306p-1f * a; // 2/pi
j = quick_and_dirty_rintf (j);
r = fmaf (j, -0x1.921fb0p+00f, a); // pio2_high
r = fmaf (j, -0x1.5110b4p-22f, r); // pio2_mid
r = fmaf (j, -0x1.846988p-48f, r); // pio2_low
*q = (int)j;
}
return r;
}
/* Approximate sine on [-PI/4,+PI/4]. Maximum ulp error = 0.64721
Returns -0.0f for an argument of -0.0f
Polynomial approximation based on unpublished work by T. Myklebust
*/
float sinf_poly (float a, float s)
{
float r;
r = 0x1.7d3bbcp-19f;
r = fmaf (r, s, -0x1.a06bbap-13f);
r = fmaf (r, s, 0x1.11119ap-07f);
r = fmaf (r, s, -0x1.555556p-03f);
r = r * s + 0.0f; // ensure -0 is passed trough
r = fmaf (r, a, a);
return r;
}
/* Approximate cosine on [-PI/4,+PI/4]. Maximum ulp error = 0.87531 */
float cosf_poly (float s)
{
float r;
r = 0x1.98e616p-16f;
r = fmaf (r, s, -0x1.6c06dcp-10f);
r = fmaf (r, s, 0x1.55553cp-05f);
r = fmaf (r, s, -0x1.000000p-01f);
r = fmaf (r, s, 0x1.000000p+00f);
return r;
}
/* Map sine or cosine value based on quadrant */
float sinf_cosf_core (float a, int i)
{
float r, s;
s = a * a;
r = (i & 1) ? cosf_poly (s) : sinf_poly (a, s);
if (i & 2) {
r = 0.0f - r; // don't change "sign" of NaNs
}
return r;
}
/* maximum ulp error = 1.49241 */
float my_sinf (float a)
{
float r;
int i;
a = a * 0.0f + a; // inf -> NaN
r = trig_red_f (a, 117435.992f, &i);
r = sinf_cosf_core (r, i);
return r;
}
/* maximum ulp error = 1.49510 */
float my_cosf (float a)
{
float r;
int i;
a = a * 0.0f + a; // inf -> NaN
r = trig_red_f (a, 71476.0625f, &i);
r = sinf_cosf_core (r, i + 1);
return r;
}
Run Code Online (Sandbox Code Playgroud)