我正在尝试通过确定是否应该用0替换NA,或者如果将NA替换为NA来清理数据集.
以下是示例数据集.'Dom.Supply'应等于剩余因子的总和.例如,'Feed','Waste','Processing'和'Other.Uses'在行3:5中出现的NA可以用0替换为具有值的因子之和(即'Food'和'种子')等于'Dom.Supply的值.但是,在第1行和第2行中,NAs必须保持为'Food'和'Seed'不等于'Dom.Supply'的总和.
Region Country Group Item Year Production Imports Stock.Var Exports Dom.Supply Feed Seed Waste Processing Other.Uses Food
NAm.Oceania Australia Cereals Rye 1961 11 0 0 2 9 NA 1 NA NA NA 7
NAm.Oceania Australia Cereals Rye 1962 10 0 0 3 7 NA 1 NA NA NA 5
NAm.Oceania Australia Cereals Rye 1963 10 0 0 1 9 NA 2 NA NA NA 7
NAm.Oceania Australia Cereals Rye 1964 14 0 -5 0 9 NA 2 NA NA NA 7
NAm.Oceania Australia Cereals Rye 1965 11 0 5 0 16 NA 2 NA NA NA 14
Run Code Online (Sandbox Code Playgroud)
我曾经replace如下使用这个函数(作为一个例子,但不是我想要使用的操作),但这是用0代替NA的简单替代,而不是NA = 0的测试.
data$AF2 <- 1-((replace(data$Feed, is.na(data$Feed), 0) + (replace(data$Seed,
is.na(data$Seed), 0)) / data$Dom.Supply))
Run Code Online (Sandbox Code Playgroud)
谢谢!
我用这个:
DF <- read.table(text = "Dom.Supply Feed Seed Waste Processing Other.Uses Food
9 NA 1 NA NA NA 7
7 NA 1 NA NA NA 5
9 NA 2 NA NA NA 7
9 NA 2 NA NA NA 7
16 NA 2 NA NA NA 14", header = TRUE)
ix <- rowSums(DF[, -1], na.rm = TRUE) == DF[, 1]
DF[ix,] <- lapply(DF[ix,], function(x) {
x[is.na(x)] <- 0
x
})
# Dom.Supply Feed Seed Waste Processing Other.Uses Food
#1 9 NA 1 NA NA NA 7
#2 7 NA 1 NA NA NA 5
#3 9 0 2 0 0 0 7
#4 9 0 2 0 0 0 7
#5 16 0 2 0 0 0 14
Run Code Online (Sandbox Code Playgroud)