为决策树中的每个数据点寻找对应的叶节点(scikit-learn)

neo*_*bot 5 python machine-learning decision-tree scikit-learn

我在 python 3.4 中使用 scikit-learn 包中的决策树分类器,我想为我的每个输入数据点获取相应的叶节点 ID。

例如,我的输入可能如下所示:

array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2]])
Run Code Online (Sandbox Code Playgroud)

假设对应的叶节点分别为 16、5 和 45。我希望我的输出是:

leaf_node_id = array([16, 5, 45])
Run Code Online (Sandbox Code Playgroud)

我已经通读了 scikit-learn 邮件列表和关于 SF 的相关问题,但我仍然无法让它工作。这是我在邮件列表中找到的一些提示,但仍然不起作用。

http://sourceforge.net/p/scikit-learn/mailman/message/31728624/

归根结底,我只想有一个函数 GetLeafNode(clf, X_valida) 使其输出是相应叶节点的列表。下面是重现我收到的错误的代码。因此,任何建议将不胜感激。

from sklearn.datasets import load_iris
from sklearn import tree

# load data and divide it to train and validation
iris = load_iris()

num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]

y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]

# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)

# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)

# This gives the error message below:
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-17-2ecc95213752> in <module>()
----> 1 clf.tree_.apply(X_train)

_tree.pyx in sklearn.tree._tree.Tree.apply (sklearn/tree/_tree.c:19595)()

ValueError: Buffer dtype mismatch, expected 'DTYPE_t' but got 'double'
Run Code Online (Sandbox Code Playgroud)

alb*_*rji 6

从 scikit-learn 0.17 开始,您可以使用DecisionTree 对象的apply方法来获取数据点在树中结束的叶子的索引。基于neobot的回答:

from sklearn.datasets import load_iris
from sklearn import tree

# load data and divide it to train and validation
iris = load_iris()

num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]

y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]

# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)

# Compute the leaf node id for each of my training data points
clf.apply(X_train)
Run Code Online (Sandbox Code Playgroud)

产生输出

array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2])
Run Code Online (Sandbox Code Playgroud)


neo*_*bot 5

我终于让它发挥作用了。这是一种基于我在 scikit-learn 邮件列表中的通信消息的解决方案:

在 scikit-learn 0.16.1 版本之后,apply 方法在 中实现clf.tree_,因此,我按照以下步骤操作:

  1. 将 scikit-learn 更新到最新版本(0.16.1),以便您可以使用apply以下方法clf.tree_
  2. 使用以下方法将输入数据数组 ( X_train, X_valida)转换为:float64float32X_train = X_train.astype('float32')
  3. apply现在你可以这样使用方法:clf.tree_.apply(X_train)你将获得每个数据点的叶节点id。

这是最终的代码:

from sklearn.datasets import load_iris
from sklearn import tree

# load data and divide it to train and validation
iris = load_iris()

num_train = 100
X_train = iris.data[:num_train,:]
X_valida = iris.data[num_train:,:]

y_train = iris.target[:num_train]
y_valida = iris.target[num_train:]

# convert data to float32
X_train = X_train.astype('float32')

# fit the decision tree using the train data set
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X_train, y_train)

# Now I want to know the corresponding leaf node id for each of my training data point
clf.tree_.apply(X_train)

# This gives the leaf node id:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2])
Run Code Online (Sandbox Code Playgroud)