我的问题与这个和另一个问题有很大的相似之处,但我的数据集有点不同,我似乎无法使这些解决方案有效.如果我误解了什么,请原谅我,这个问题是多余的.
我有一个这样的数据集:
df <- data.frame(
id = c(1:5),
conditionA = c(1, NA, NA, NA, 1),
conditionB = c(NA, 1, NA, NA, NA),
conditionC = c(NA, NA, 1, NA, NA),
conditionD = c(NA, NA, NA, 1, NA)
)
# id conditionA conditionB conditionC conditionD
# 1 1 1 NA NA NA
# 2 2 NA 1 NA NA
# 3 3 NA NA 1 NA
# 4 4 NA NA NA 1
# 5 5 1 NA NA NA
Run Code Online (Sandbox Code Playgroud)
(请注意,除了这些列之外,我还有很多其他列不应受当前操作的影响.)
所以,我观察到conditionA,conditionB,conditionC和conditionD相互独家,应该更好地表现为一个单一分类变量,即factor,应该看起来像这样的:
# id type
# 1 1 conditionA
# 2 2 conditionB
# 3 3 conditionC
# 4 4 conditionD
# 5 5 conditionA
Run Code Online (Sandbox Code Playgroud)
使用我已经调查gather或unite从tidyr,但它不符合这种情况下(有unite,我们失去从变量名称的信息).
我尝试使用kimisc::coalescence.na,如第一个提到的答案中所建议的,但是1.我首先需要根据每列的名称设置一个因子值,2.它不能按预期工作,只包括第一列:
library(kimisc)
# first, factor each condition with a specific label
df$conditionA <- df$conditionA %>%
factor(levels = 1, labels = "conditionA")
df$conditionB <- df$conditionB %>%
factor(levels = 1, labels = "conditionB")
df$conditionC <- df$conditionC %>%
factor(levels = 1, labels = "conditionC")
df$conditionD <- df$conditionD %>%
factor(levels = 1, labels = "conditionD")
# now coalesce.na to merge into a single variable
df$type <- coalesce.na(df$conditionA, df$conditionB, df$conditionC, df$conditionD)
df
# id conditionA conditionB conditionC conditionD type
# 1 1 conditionA <NA> <NA> <NA> conditionA
# 2 2 <NA> conditionB <NA> <NA> <NA>
# 3 3 <NA> <NA> conditionC <NA> <NA>
# 4 4 <NA> <NA> <NA> conditionD <NA>
# 5 5 conditionA <NA> <NA> <NA> conditionA
Run Code Online (Sandbox Code Playgroud)
我尝试了第二个问题中的其他建议,但没有找到一个会给我带来预期结果的建议......
尝试:
library(dplyr)
library(tidyr)
df %>% gather(type, value, -id) %>% na.omit() %>% select(-value) %>% arrange(id)
Run Code Online (Sandbox Code Playgroud)
这使:
# id type
#1 1 conditionA
#2 2 conditionB
#3 3 conditionC
#4 4 conditionD
#5 5 conditionA
Run Code Online (Sandbox Code Playgroud)
更新
要处理您在注释中详细说明的情况,您可以对数据框的所需部分进行操作,然后left_join()对其他列进行操作:
df %>%
select(starts_with("condition"), id) %>%
gather(type, value, -id) %>%
na.omit() %>%
select(-value) %>%
left_join(., df %>% select(-starts_with("condition"))) %>%
arrange(id)
Run Code Online (Sandbox Code Playgroud)
您还可以尝试:
colnames(df)[2:5][max.col(!is.na(df[,2:5]))]
#[1] "conditionA" "conditionB" "conditionC" "conditionD" "conditionA"
Run Code Online (Sandbox Code Playgroud)
如果只有一列的值不同于NA每一行的值,则上述方法有效。如果一行的值可以都是NAs,那么你可以尝试:
mat<-!is.na(df[,2:5])
colnames(df)[2:5][max.col(mat)*(NA^!rowSums(mat))]
Run Code Online (Sandbox Code Playgroud)