内存堆分配器库保持独立的结构?

Yur*_*nko 13 c++ memory boost memory-management

这是我的问题:我需要管理我的程序无法读取或写入的远程连续缓冲区中的内存.它需要具有malloc()/ free()语义,并支持设置最小对齐和碎片避免(尽可能).由于我无法直接读取或写入此缓冲区,因此我需要使用本地结构来管理所有分配.

我已经在使用boost了,所以如果可以按摩内部的东西来做到这一点,那就太好了.但是,我并不反对使用C库或类似的东西.

举个例子,我需要一个非IPC版本的:

boost::interprocess::basic_managed_external_buffer<
                     char,
                     boost::interprocess::rbtree_best_fit<
                                          boost::interprocess::mutex_family,
                                          boost::interprocess::offset_ptr<void>,
                                          SOME_ALIGNMENT>,
                     boost::interprocess::iset_index>
Run Code Online (Sandbox Code Playgroud)

最好使用malloc/free语义而不是new/delete但是没有实际读取或写入底层缓冲区(并将所有分配信息/数据结构保存在单独的缓冲区中)

有任何想法吗?

PS我不希望boost :: interprocess示例误导,我只是熟悉接口,所以以它为例.应用程序实际上不是进程间的,分配器只能在我的应用程序中使用.

具体来说,我希望能够管理一个16GB的外部缓冲区,其分配大小从128字节一直到512MB.这是严格的64位代码,但即便如此我更喜欢指针类型作为模板参数,所以我可以明确地使用uint64_t.

Yur*_*nko 1

我正在发布有关我们实际所做的事情的最新信息。我最终实现了自己的远程内存分配器(来源如下)。它在精神上类似于Sam 建议的答案,但使用 boost 侵入式 RB 树来避免释放、加入等时的一些 log(N) 查找。它是线程安全的,并支持各种远程指针/偏移类型作为模板参数。它在很多方面可能并不理想,但它对于我们需要它做的事情来说已经足够好了。如果您发现错误,请告诉我。

/*
 * Thread-safe remote memory allocator
 *
 * Author: Yuriy Romanenko
 * Copyright (c) 2015 Lytro, Inc.
 *
 */

#pragma once

#include <memory>
#include <mutex>
#include <cstdint>
#include <cstdio>
#include <functional>

#include <boost/intrusive/rbtree.hpp>

namespace bi = boost::intrusive;

template<typename remote_ptr_t = void*,
         typename remote_size_t = size_t,
         typename remote_uintptr_t = uintptr_t>
class RemoteAllocator
{
    /* Internal structure used for keeping track of a contiguous block of
     * remote memory. It can be on one or two of the following RB trees:
     *    Free Chunks (sorted by size)
     *    All Chunks (sorted by remote pointer)
     */
    struct Chunk
    {
        bi::set_member_hook<> mRbFreeChunksHook;
        bi::set_member_hook<> mRbAllChunksHook;

        remote_uintptr_t mOffset;
        remote_size_t mSize;
        bool mFree;

        Chunk(remote_uintptr_t off, remote_size_t sz, bool fr)
                : mOffset(off), mSize(sz), mFree(fr)
        {

        }

        bool contains(remote_uintptr_t off)
        {
            return (off >= mOffset) && (off < mOffset + mSize);
        }
    private:
        Chunk(const Chunk&);
        Chunk& operator=(const Chunk&);
    };

    struct ChunkCompareSize : public std::binary_function <Chunk,Chunk,bool>
    {
        bool operator() (const Chunk& x, const Chunk& y) const
        {
            return x.mSize < y.mSize;
        }
    };
    struct ChunkCompareOffset : public std::binary_function <Chunk,Chunk,bool>
    {
        bool operator() (const Chunk& x, const Chunk& y) const
        {
            return x.mOffset < y.mOffset;
        }
    };

    typedef bi::rbtree<Chunk,
                       bi::member_hook<Chunk,
                                       bi::set_member_hook<>,
                                       &Chunk::mRbFreeChunksHook>,
                       bi::compare< ChunkCompareSize > > FreeChunkTree;

    typedef bi::rbtree<Chunk,
                       bi::member_hook<Chunk,
                                       bi::set_member_hook<>,
                                       &Chunk::mRbAllChunksHook>,
                       bi::compare< ChunkCompareOffset > > AllChunkTree;

    // Thread safety lock
    std::mutex mLock;
    // Size of the entire pool
    remote_size_t mSize;
    // Start address of the pool
    remote_ptr_t mStartAddr;

    // Tree of free chunks
    FreeChunkTree mFreeChunks;
    // Tree of all chunks
    AllChunkTree mAllChunks;

    // This removes the chunk from both trees
    Chunk *unlinkChunk(Chunk *c)
    {
        mAllChunks.erase(mAllChunks.iterator_to(*c));
        if(c->mFree)
        {
            mFreeChunks.erase(mFreeChunks.iterator_to(*c));
        }
        return c;
    }

    // This reinserts the chunk into one or two trees, depending on mFree
    Chunk *relinkChunk(Chunk *c)
    {
        mAllChunks.insert_equal(*c);
        if(c->mFree)
        {
            mFreeChunks.insert_equal(*c);
        }
        return c;
    }

    /* This assumes c is 'free' and walks the mAllChunks tree to the left
     * joining any contiguous free chunks into this one
     */
    bool growFreeLeft(Chunk *c)
    {
        auto it = mAllChunks.iterator_to(*c);
        if(it != mAllChunks.begin())
        {
            it--;
            if(it->mFree)
            {
                Chunk *left = unlinkChunk(&(*it));
                unlinkChunk(c);
                c->mOffset = left->mOffset;
                c->mSize = left->mSize + c->mSize;
                delete left;
                relinkChunk(c);
                return true;
            }
        }
        return false;
    }
    /* This assumes c is 'free' and walks the mAllChunks tree to the right
     * joining any contiguous free chunks into this one
     */
    bool growFreeRight(Chunk *c)
    {
        auto it = mAllChunks.iterator_to(*c);
        it++;
        if(it != mAllChunks.end())
        {
            if(it->mFree)
            {
                Chunk *right = unlinkChunk(&(*it));
                unlinkChunk(c);
                c->mSize = right->mSize + c->mSize;
                delete right;
                relinkChunk(c);
                return true;
            }
        }
        return false;
    }

public:
    RemoteAllocator(remote_size_t size, remote_ptr_t startAddr) :
        mSize(size), mStartAddr(startAddr)
    {
        /* Initially we create one free chunk the size of the entire managed
         * memory pool, and add it to both trees
         */
        Chunk *all = new Chunk(reinterpret_cast<remote_uintptr_t>(mStartAddr),
                               mSize,
                               true);
        mAllChunks.insert_equal(*all);
        mFreeChunks.insert_equal(*all);
    }

    ~RemoteAllocator()
    {
        auto it = mAllChunks.begin();

        while(it != mAllChunks.end())
        {
            Chunk *pt = unlinkChunk(&(*it++));
            delete pt;
        }
    }

    remote_ptr_t malloc(remote_size_t bytes)
    {
        std::unique_lock<std::mutex> lock(mLock);
        auto fit = mFreeChunks.lower_bound(
                    Chunk(reinterpret_cast<remote_uintptr_t>(mStartAddr),
                          bytes,
                          true));

        /* Out of memory */
        if(fit == mFreeChunks.end())
            return remote_ptr_t{0};

        Chunk *ret = &(*fit);
        /* We need to split the chunk because it's not the exact size */
        /* Let's remove the node */
        mFreeChunks.erase(fit);

        if(ret->mSize != bytes)
        {
            Chunk *right, *left = ret;

            /* The following logic decides which way the heap grows
             * based on allocation size. I am not 100% sure this actually
             * helps with fragmentation with such a big threshold (50%)
             *
             * Check if we will occupy more than half of the chunk,
             * in that case, use the left side. */
            if(bytes > ret->mSize / 2)
            {
                right = new Chunk(left->mOffset + bytes,
                                  left->mSize - bytes,
                                  true);
                relinkChunk(right);

                left->mSize = bytes;
                left->mFree = false;

                ret = left;
            }
            /* We'll be using less than half, let's use the right side. */
            else
            {
                right = new Chunk(left->mOffset + left->mSize - bytes,
                                  bytes,
                                  false);

                relinkChunk(right);

                left->mSize = left->mSize - bytes;
                mFreeChunks.insert_equal(*left);

                ret = right;
            }
        }
        else
        {
            ret->mFree = false;
        }

        return reinterpret_cast<remote_ptr_t>(ret->mOffset);
    }

    remote_ptr_t malloc_aligned(remote_size_t bytes, remote_size_t alignment)
    {
        remote_size_t bufSize = bytes + alignment;
        remote_ptr_t mem = this->malloc(bufSize);
        remote_ptr_t ret = mem;
        if(mem)
        {
            remote_uintptr_t offset = reinterpret_cast<remote_uintptr_t>(mem);
            if(offset % alignment)
            {
                offset = offset + (alignment - (offset % alignment));
            }
            ret = reinterpret_cast<remote_ptr_t>(offset);
        }
        return ret;
    }

    void free(remote_ptr_t ptr)
    {
        std::unique_lock<std::mutex> lock(mLock);
        Chunk ref(reinterpret_cast<remote_uintptr_t>(ptr), 0, false);
        auto it = mAllChunks.find(ref);
        if(it == mAllChunks.end())
        {
            it = mAllChunks.upper_bound(ref);
            it--;
        }
        if(!(it->contains(ref.mOffset)) || it->mFree)
            throw std::runtime_error("Could not find chunk to free");

        Chunk *chnk = &(*it);
        chnk->mFree = true;
        mFreeChunks.insert_equal(*chnk);

        /* Maximize space */
        while(growFreeLeft(chnk));
        while(growFreeRight(chnk));
    }

    void debugDump()
    {
        std::unique_lock<std::mutex> lock(mLock);
        int i = 0;
        printf("----------- All chunks -----------\n");
        for(auto it = mAllChunks.begin(); it != mAllChunks.end(); it++)
        {
            printf(" [%d] %lu -> %lu (%lu) %s\n",
                i++,
                it->mOffset,
                it->mOffset + it->mSize,
                it->mSize,
                it->mFree ? "(FREE)" : "(NOT FREE)");
        }
        i = 0;
        printf("----------- Free chunks -----------\n");
        for(auto it = mFreeChunks.begin(); it != mFreeChunks.end(); it++)
        {
            printf(" [%d] %lu -> %lu (%lu) %s\n",
                i++,
                it->mOffset,
                it->mOffset + it->mSize,
                it->mSize,
                it->mFree ? "(FREE)" : "(NOT FREE)");
        }
    }
};
Run Code Online (Sandbox Code Playgroud)