luk*_*keg 4 r intervals dataframe dplyr
采用以下通用数据
A <- c(5,7,11,10,23,30,24,6)
B <- c(1,2,3,1,2,3,1,2)
C <- data.frame(A,B)
Run Code Online (Sandbox Code Playgroud)
和以下间隔
library(intervals)
interval1 <- Intervals(
matrix(
c(
5, 15,
15, 25,
25, 35,
35, 100
),
ncol = 2, byrow = TRUE
),
closed = c( TRUE, FALSE ),
type = "Z"
)
rownames(interval1) <- c("A","B","C", "D")
interval2 <- Intervals(
matrix(
c(
0, 10,
12, 20,
22, 30,
30, 100
),
ncol = 2, byrow = TRUE
),
closed = c( TRUE, FALSE ),
type = "Z"
)
rownames(interval2) <- c("P","Q","R", "S")
Run Code Online (Sandbox Code Playgroud)
现在我想创建以下输出表

因此,当A值与两个invalvals重叠时,我想将所有数据"复制"到下面的一行.我们还介绍了data$X哪个是interval1价值,data$y哪个是interval2价值.如果数据不适合任何间隔,我想从data.frame中删除它
我不确定该break()函数是否更适合用于创建间隔,或者该dplyr函数是否可用于生成重新固化数据行
您可以使用foverlaps在data.table:
library(data.table)
C.DT <- data.table(C)
C.DT[, A1:=A] # required for `foverlaps` so we can do a range search
# `D` and `E` are your interval matrices
I1 <- data.table(cbind(data.frame(D), idX=LETTERS[1:4], idY=NA))
I2 <- data.table(cbind(data.frame(E), idX=NA, idY=LETTERS[16:19]))
setkey(I1, X1, X2) # set the keys on our interval ranges
setkey(I2, X1, X2)
rbind(
foverlaps(C.DT, I1, by.x=c("A", "A1"), nomatch=0), # match every value in `C.DT$A` to the ranges in `I1`
foverlaps(C.DT, I2, by.x=c("A", "A1"), nomatch=0)
)[order(A, B), .(A, B, X=idX, Y=idY)]
Run Code Online (Sandbox Code Playgroud)
生产:
A B X Y
1: 5 1 A NA
2: 5 1 NA P
3: 6 2 A NA
4: 6 2 NA P
5: 7 2 A NA
6: 7 2 NA P
7: 10 1 A NA
8: 10 1 NA P
9: 11 3 A NA
10: 23 2 B NA
11: 23 2 NA R
12: 24 1 B NA
13: 24 1 NA R
14: 30 3 C NA
15: 30 3 NA R
16: 30 3 NA S
Run Code Online (Sandbox Code Playgroud)
请注意,您可以轻松地改变你得到的不是什么NA,通过修改其中的步骤I1和I2创建.