Matrix/Tensor Triple产品?

Rob*_*bon 9 matlab numpy matrix blas matrix-multiplication

我正在研究的算法需要在几个地方计算一种矩阵三元产品.

该操作采用具有相同尺寸的三个方形矩阵,并产生3指数张量.标记操作数A,B以及结果C(i,j,k)第th个元素

X[i,j,k] = \sum_a A[i,a] B[a,j] C[k,a]
Run Code Online (Sandbox Code Playgroud)

在numpy中,你可以用它来计算einsum('ia,aj,ka->ijk', A, B, C).

问题:

  • 此操作是否具有标准名称?
  • 我可以通过一次BLAS呼叫来计算吗?
  • 是否有任何其他重度优化的数值C/Fortran库可以计算这种类型的表达式?

Lui*_*ndo 6

nx n为矩阵大小.在Matlab中,你可以

  1. ACn^2X n矩阵AC,使得行的AC对应于行的所有组合AC.
  2. 后乘ACB.这给出了期望的结果,仅以不同的形状.
  3. 重塑和置换尺寸以获得所需形式的结果.

码:

AC = reshape(bsxfun(@times, permute(A, [1 3 2]), permute(C, [3 1 2])), n^2, n); % // 1
X = permute(reshape((AC*B).', n, n, n), [2 1 3]);                               %'// 2, 3
Run Code Online (Sandbox Code Playgroud)

检查基于逐字循环的方法:

%// Example data:
n = 3;
A = rand(n,n);
B = rand(n,n);
C = rand(n,n);

%// Proposed approach:
AC = reshape(bsxfun(@times, permute(A, [1 3 2]), permute(C, [3 1 2])), n^2, n);
X = permute(reshape((AC*B).', n, n, n), [2 1 3]); %'

%// Loop-based approach:
Xloop = NaN(n,n,n); %// initiallize
for ii = 1:n
    for jj = 1:n
        for kk = 1:n
            Xloop(ii,jj,kk) = sum(A(ii,:).*B(:,jj).'.*C(kk,:)); %'
        end
    end
end

%// Compute maximum relative difference:
max(max(max(abs(X./Xloop-1))))

ans =
    2.2204e-16
Run Code Online (Sandbox Code Playgroud)

最大相对差值的大小为eps,因此结果在数值精度范围内是正确的.


Div*_*kar 5

简介和解决方案代码

np.einsum,真的很难被击败,在极少数情况下,你仍然可以击败它,如果你可以matrix-multiplication进入计算.经过几次试验,似乎你可以带来matrix-multiplication with np.dot超越性能np.einsum('ia,aj,ka->ijk', A, B, C).

其基本思想是,我们打破了"所有einsum"操作成的组合np.einsumnp.dot具体如下:

  • 为了得到我们的总结A:[i,a]B:[a,j]完成.np.einsum3D array:[i,j,a]
  • 然后将这个3D阵列重新整形为a 2D array:[i*j,a]和第三个阵列,C[k,a]转换为[a,k],以便matrix-multiplication在这两个之间执行,将我们[i*j,k]作为矩阵产品,因为我们在[a]那里丢失了索引.
  • 将产品重新整形为3D array:[i,j,k]最终输出.

这是迄今为止讨论的第一个版本的实现 -

import numpy as np

def tensor_prod_v1(A,B,C):   # First version of proposed method
    # Shape parameters
    m,d = A.shape
    n = B.shape[1]
    p = C.shape[0]

    # Calculate \sum_a A[i,a] B[a,j] to get a 3D array with indices as (i,j,a)
    AB = np.einsum('ia,aj->ija', A, B)

    # Calculate entire summation losing a-ith index & reshaping to desired shape
    return np.dot(AB.reshape(m*n,d),C.T).reshape(m,n,p)
Run Code Online (Sandbox Code Playgroud)

由于我们a-th在所有三个输入数组中求和索引,因此可以使用三种不同的方法来对第a个索引求和.前面列出的代码是(A,B).因此,我们也可以有(A,C)(B,C)给我们两个的变化,未来所列:

def tensor_prod_v2(A,B,C):
    # Shape parameters
    m,d = A.shape
    n = B.shape[1]
    p = C.shape[0]

    # Calculate \sum_a A[i,a] C[k,a] to get a 3D array with indices as (i,k,a)
    AC = np.einsum('ia,ja->ija', A, C)

    # Calculate entire summation losing a-ith index & reshaping to desired shape
    return np.dot(AC.reshape(m*p,d),B).reshape(m,p,n).transpose(0,2,1)

def tensor_prod_v3(A,B,C):
    # Shape parameters
    m,d = A.shape
    n = B.shape[1]
    p = C.shape[0]

    # Calculate \sum_a B[a,j] C[k,a] to get a 3D array with indices as (a,j,k)
    BC = np.einsum('ai,ja->aij', B, C)

    # Calculate entire summation losing a-ith index & reshaping to desired shape
    return np.dot(A,BC.reshape(d,n*p)).reshape(m,n,p)
Run Code Online (Sandbox Code Playgroud)

根据输入数组的形状,不同的方法会相互产生不同的加速比,但我们希望所有all-einsum方法都比方法更好.性能数字列在下一节中.

运行时测试

这可能是最重要的部分,因为我们试图通过all-einsum最初在问题中提出的方法的三种变体来研究加速数.

数据集#1(等形数组):

In [494]: L1 = 200
     ...: L2 = 200
     ...: L3 = 200
     ...: al = 200
     ...: 
     ...: A = np.random.rand(L1,al)
     ...: B = np.random.rand(al,L2)
     ...: C = np.random.rand(L3,al)
     ...: 

In [495]: %timeit tensor_prod_v1(A,B,C)
     ...: %timeit tensor_prod_v2(A,B,C)
     ...: %timeit tensor_prod_v3(A,B,C)
     ...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
     ...: 
1 loops, best of 3: 470 ms per loop
1 loops, best of 3: 391 ms per loop
1 loops, best of 3: 446 ms per loop
1 loops, best of 3: 3.59 s per loop
Run Code Online (Sandbox Code Playgroud)

数据集#2(更大的A):

In [497]: L1 = 1000
     ...: L2 = 100
     ...: L3 = 100
     ...: al = 100
     ...: 
     ...: A = np.random.rand(L1,al)
     ...: B = np.random.rand(al,L2)
     ...: C = np.random.rand(L3,al)
     ...: 

In [498]: %timeit tensor_prod_v1(A,B,C)
     ...: %timeit tensor_prod_v2(A,B,C)
     ...: %timeit tensor_prod_v3(A,B,C)
     ...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
     ...: 
1 loops, best of 3: 442 ms per loop
1 loops, best of 3: 355 ms per loop
1 loops, best of 3: 303 ms per loop
1 loops, best of 3: 2.42 s per loop
Run Code Online (Sandbox Code Playgroud)

数据集#3(更大的B):

In [500]: L1 = 100
     ...: L2 = 1000
     ...: L3 = 100
     ...: al = 100
     ...: 
     ...: A = np.random.rand(L1,al)
     ...: B = np.random.rand(al,L2)
     ...: C = np.random.rand(L3,al)
     ...: 

In [501]: %timeit tensor_prod_v1(A,B,C)
     ...: %timeit tensor_prod_v2(A,B,C)
     ...: %timeit tensor_prod_v3(A,B,C)
     ...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
     ...: 
1 loops, best of 3: 474 ms per loop
1 loops, best of 3: 247 ms per loop
1 loops, best of 3: 439 ms per loop
1 loops, best of 3: 2.26 s per loop
Run Code Online (Sandbox Code Playgroud)

数据集#4(更大的C):

In [503]: L1 = 100
     ...: L2 = 100
     ...: L3 = 1000
     ...: al = 100
     ...: 
     ...: A = np.random.rand(L1,al)
     ...: B = np.random.rand(al,L2)
     ...: C = np.random.rand(L3,al)

In [504]: %timeit tensor_prod_v1(A,B,C)
     ...: %timeit tensor_prod_v2(A,B,C)
     ...: %timeit tensor_prod_v3(A,B,C)
     ...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
     ...: 
1 loops, best of 3: 250 ms per loop
1 loops, best of 3: 358 ms per loop
1 loops, best of 3: 362 ms per loop
1 loops, best of 3: 2.46 s per loop
Run Code Online (Sandbox Code Playgroud)

数据集#5(更大的第a维长度):

In [506]: L1 = 100
     ...: L2 = 100
     ...: L3 = 100
     ...: al = 1000
     ...: 
     ...: A = np.random.rand(L1,al)
     ...: B = np.random.rand(al,L2)
     ...: C = np.random.rand(L3,al)
     ...: 

In [507]: %timeit tensor_prod_v1(A,B,C)
     ...: %timeit tensor_prod_v2(A,B,C)
     ...: %timeit tensor_prod_v3(A,B,C)
     ...: %timeit np.einsum('ia,aj,ka->ijk', A, B, C)
     ...: 
1 loops, best of 3: 373 ms per loop
1 loops, best of 3: 269 ms per loop
1 loops, best of 3: 299 ms per loop
1 loops, best of 3: 2.38 s per loop
Run Code Online (Sandbox Code Playgroud)

结论:我们看到8x-10x所提出的方法的变化比all-einsum问题中列出的方法更快.