我有包含唯一标识符,类别和说明的数据.以下是玩具数据集.
prjnumber <- c(1,2,3,4,5,6,7,8,9,10)
category <- c("based","trill","lit","cold",NA,"epic", NA,NA,NA,NA)
description <- c("skip class",
"dunk on brayden",
"record deal",
"fame and fortune",
NA,
"female attention",
NA,NA,NA,NA)
toy.df <- data.frame(prjnumber, category, description)
> toy.df
prjnumber category description
1 1 based skip class
2 2 trill dunk on brayden
3 3 lit record deal
4 4 cold fame and fortune
5 5 <NA> <NA>
6 6 epic female attention
7 7 <NA> <NA>
8 8 <NA> <NA>
9 9 <NA> <NA>
10 10 <NA> <NA>
Run Code Online (Sandbox Code Playgroud)
我想从已填充的行中随机抽取"类别"和"描述"列,以用作缺少数据的行的填充.最终的数据框架将是完整的,并且只依赖于包含数据的最初5行.该解决方案将保持列间相关性.预期的输出是:
> toy.df
prjnumber category description
1 1 based skip class
2 2 trill dunk on brayden
3 3 lit record deal
4 4 cold fame and fortune
5 5 lit record deal
6 6 epic female attention
7 7 based skip class
8 8 based skip class
9 9 lit record deal
10 10 trill dunk on brayden
Run Code Online (Sandbox Code Playgroud)
complete = na.omit(toy.df)
toy.df[is.na(toy.df$category), c("category", "description")] =
complete[sample(1:nrow(complete), size = sum(is.na(toy.df$category)), replace = TRUE),
c("category", "description")]
toy.df
# prjnumber category description
# 1 1 based skip class
# 2 2 trill dunk on brayden
# 3 3 lit record deal
# 4 4 cold fame and fortune
# 5 5 lit record deal
# 6 6 epic female attention
# 7 7 cold fame and fortune
# 8 8 based skip class
# 9 9 epic female attention
# 10 10 epic female attention
Run Code Online (Sandbox Code Playgroud)
虽然如果你没有从为NA行填写的唯一标识符开始,它看起来会更直接......
你可以试试
library(dplyr)
toy.df %>%
mutate_each(funs(replace(., is.na(.), sample(.[!is.na(.)]))), 2:3)
Run Code Online (Sandbox Code Playgroud)
根据新信息,我们可能需要一个数字索引来使用funs.
toy.df %>%
mutate(indx= replace(row_number(), is.na(category),
sample(row_number()[!is.na(category)], replace=TRUE))) %>%
mutate_each(funs(.[indx]), 2:3) %>%
select(-indx)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
76 次 |
| 最近记录: |