如何使用R中前一行的样本数据填充非相邻行?

Jas*_*ney 2 random r sample

我有包含唯一标识符,类别和说明的数据.以下是玩具数据集.

prjnumber <- c(1,2,3,4,5,6,7,8,9,10)
category <- c("based","trill","lit","cold",NA,"epic", NA,NA,NA,NA)
description <- c("skip class",
                 "dunk on brayden",
                 "record deal",
                 "fame and fortune",
                 NA,
                 "female attention",
                 NA,NA,NA,NA)
toy.df <- data.frame(prjnumber, category, description)

> toy.df
       prjnumber category      description
    1          1    based       skip class
    2          2    trill  dunk on brayden
    3          3      lit      record deal
    4          4     cold fame and fortune
    5          5     <NA>             <NA>
    6          6     epic female attention
    7          7     <NA>             <NA>
    8          8     <NA>             <NA>
    9          9     <NA>             <NA>
    10        10     <NA>             <NA>
Run Code Online (Sandbox Code Playgroud)

我想从已填充的行中随机抽取"类别"和"描述"列,以用作缺少数据的行的填充.最终的数据框架将是完整的,并且只依赖于包含数据的最初5行.该解决方案将保持列间相关性.预期的输出是:

> toy.df
       prjnumber category      description
    1          1    based       skip class
    2          2    trill  dunk on brayden
    3          3      lit      record deal
    4          4     cold fame and fortune
    5          5      lit      record deal
    6          6     epic female attention
    7          7    based       skip class
    8          8    based       skip class
    9          9     lit       record deal
    10        10   trill   dunk on brayden
Run Code Online (Sandbox Code Playgroud)

Gre*_*gor 5

complete = na.omit(toy.df)
toy.df[is.na(toy.df$category), c("category", "description")] =
    complete[sample(1:nrow(complete), size = sum(is.na(toy.df$category)), replace = TRUE),
             c("category", "description")]
toy.df
#    prjnumber category      description
# 1          1    based       skip class
# 2          2    trill  dunk on brayden
# 3          3      lit      record deal
# 4          4     cold fame and fortune
# 5          5      lit      record deal
# 6          6     epic female attention
# 7          7     cold fame and fortune
# 8          8    based       skip class
# 9          9     epic female attention
# 10        10     epic female attention
Run Code Online (Sandbox Code Playgroud)

虽然如果你没有从为NA行填写的唯一标识符开始,它看起来会更直接......


akr*_*run 5

你可以试试

library(dplyr)
toy.df %>%
      mutate_each(funs(replace(., is.na(.), sample(.[!is.na(.)]))), 2:3) 
Run Code Online (Sandbox Code Playgroud)

根据新信息,我们可能需要一个数字索引来使用funs.

toy.df %>% 
   mutate(indx= replace(row_number(), is.na(category), 
           sample(row_number()[!is.na(category)], replace=TRUE)))  %>%
   mutate_each(funs(.[indx]), 2:3) %>% 
   select(-indx)
Run Code Online (Sandbox Code Playgroud)