Bij*_*jan 10 .net c# ryujit visual-studio-2015
Net 4.6 RC x64的速度是x86(发布版本)的两倍:
考虑一下这段代码:
class SpectralNorm
{
public static void Main(String[] args)
{
int n = 5500;
if (args.Length > 0) n = Int32.Parse(args[0]);
var spec = new SpectralNorm();
var watch = Stopwatch.StartNew();
var res = spec.Approximate(n);
Console.WriteLine("{0:f9} -- {1}", res, watch.Elapsed.TotalMilliseconds);
}
double Approximate(int n)
{
// create unit vector
double[] u = new double[n];
for (int i = 0; i < n; i++) u[i] = 1;
// 20 steps of the power method
double[] v = new double[n];
for (int i = 0; i < n; i++) v[i] = 0;
for (int i = 0; i < 10; i++)
{
MultiplyAtAv(n, u, v);
MultiplyAtAv(n, v, u);
}
// B=AtA A multiplied by A transposed
// v.Bv /(v.v) eigenvalue of v
double vBv = 0, vv = 0;
for (int i = 0; i < n; i++)
{
vBv += u[i] * v[i];
vv += v[i] * v[i];
}
return Math.Sqrt(vBv / vv);
}
/* return element i,j of infinite matrix A */
double A(int i, int j)
{
return 1.0 / ((i + j) * (i + j + 1) / 2 + i + 1);
}
/* multiply vector v by matrix A */
void MultiplyAv(int n, double[] v, double[] Av)
{
for (int i = 0; i < n; i++)
{
Av[i] = 0;
for (int j = 0; j < n; j++) Av[i] += A(i, j) * v[j];
}
}
/* multiply vector v by matrix A transposed */
void MultiplyAtv(int n, double[] v, double[] Atv)
{
for (int i = 0; i < n; i++)
{
Atv[i] = 0;
for (int j = 0; j < n; j++) Atv[i] += A(j, i) * v[j];
}
}
/* multiply vector v by matrix A and then by matrix A transposed */
void MultiplyAtAv(int n, double[] v, double[] AtAv)
{
double[] u = new double[n];
MultiplyAv(n, v, u);
MultiplyAtv(n, u, AtAv);
}
}
Run Code Online (Sandbox Code Playgroud)
在我的机器上,x86发行版需要4.5秒才能完成,而x64需要9.5秒.是否需要x64的特定标志/设置?
UPDATE
事实证明,RyuJIT在这个问题上发挥了作用.如果useLegacyJit在app.config中启用,则结果不同,这次x64更快.
<?xml version="1.0" encoding="utf-8"?>
<configuration>
<startup>
<supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6"/>
</startup>
<runtime>
<useLegacyJit enabled="1" />
</runtime>
</configuration>
Run Code Online (Sandbox Code Playgroud)
UPDATE
性能回归的原因在GitHub上有解答;简而言之,它似乎只能在 Intel 上重现,而不能在 Amd64 机器上重现。内循环操作
Av[i] += v[j] * A(i, j);
Run Code Online (Sandbox Code Playgroud)
结果是
IN002a: 000093 lea eax, [rax+r10+1]
IN002b: 000098 cvtsi2sd xmm1, rax
IN002c: 00009C movsd xmm2, qword ptr [@RWD00]
IN002d: 0000A4 divsd xmm2, xmm1
IN002e: 0000A8 movsxd eax, edi
IN002f: 0000AB movaps xmm1, xmm2
IN0030: 0000AE mulsd xmm1, qword ptr [r8+8*rax+16]
IN0031: 0000B5 addsd xmm0, xmm1
IN0032: 0000B9 movsd qword ptr [rbx], xmm0
Run Code Online (Sandbox Code Playgroud)
Cvtsi2sd 部分写入低 8 字节,而 xmm 寄存器的高字节未修改。对于重现情况,xmm1 已部分编写,但代码中还进一步使用了 xmm1。这会在 cvtsi2sd 和使用 xmm1 的其他指令之间创建错误的依赖关系,从而影响指令并行性。实际上,在 cvtsi2sd 修复性能回归之前,将 Int 的 codegen 修改为 Float 转换以发出“xorps xmm1, xmm1”。
解决方法:如果我们在 MultiplyAv/MultiplyAvt 方法中反转乘法运算中的操作数顺序,也可以避免性能回归
void MultiplyAv(int n, double[] v, double[] Av)
{
for (int i = 0; i < n; i++)
{
Av[i] = 0;
for (int j = 0; j < n; j++)
Av[i] += v[j] * A(i, j); // order of operands reversed
}
}
Run Code Online (Sandbox Code Playgroud)