假设我有两个变量权重和年龄,我必须在这种情况下找到99%的置信区间:
a=lm(weight~age)我知道纵坐标是直接截距,但为什么这不起作用:
predict(a, newdata=data.frame(age=intercept), interval='confidence',
level=0.99)
Run Code Online (Sandbox Code Playgroud)
为什么这不正确?我想知道这些案例的正确命令.
扫帚包可以返回回归模型估计的置信区间.
require(broom)
A <- c(12,11,12,15,13,16,13,18,11,14)
B <- c(50,51,62,45,63,76,53,68,51,74)
model <- lm(A~B)
tidy(model, conf.int = TRUE, conf.level = 0.99)
term estimate std.error statistic p.value conf.low conf.high
1 (Intercept) 6.8153948 3.75608761 1.814493 0.1071515 -5.78773401 19.418524
2 B 0.1127252 0.06240674 1.806299 0.1085031 -0.09667358 0.322124
Run Code Online (Sandbox Code Playgroud)
编辑:我忘记了可以获得基础R中回归模型的置信区间.
confint(model, level = .99)
0.5 % 99.5 %
(Intercept) -5.78773401 19.418524
B -0.09667358 0.322124
Run Code Online (Sandbox Code Playgroud)