xue*_*hui 9 .net c# linq recursion combinatorics
任何人都可以详细说明这段代码的一些细节,甚至可以给出这个算法的非Linq版本:
public static IEnumerable<IEnumerable<T>> Combinations<T>
(this IEnumerable<T> elements, int k)
{
return k == 0 ? new[] { new T[0] }
: elements.SelectMany(
(e, i) =>
elements
.Skip(i + 1)
.Combinations(k - 1)
.Select(c => (new[] {e}).Concat(c)));
}
Run Code Online (Sandbox Code Playgroud)
理解这段代码的最好方法是阅读Eric Lippert的精彩系列文章:
基本上,如果我们有IEnumerable5个项目,并希望得到3的所有组合大小,我们需要生成这样的东西:
{
// 50, 60, 70, 80, 90
{50, 60, 70}, // T T T F F
{50, 60, 80}, // T T F T F
{50, 60, 90}, // T T F F T
{50, 70, 80}, // T F T T F
{50, 70, 90}, // T F T F T
{50, 80, 90}, // T F F T T
{60, 70, 80}, // F T T T F
{60, 70, 90}, // F T T F T
{60, 80, 90}, // F T F T T
{70, 80, 90} // F F T T T
}
Run Code Online (Sandbox Code Playgroud)
Eric的递归实现:
// Takes integers n and k, both non-negative.
// Produces all sets of exactly k elements consisting only of
// integers from 0 through n - 1.
private static IEnumerable<TinySet> Combinations(int n, int k)
{
// Base case: if k is zero then there can be only one set
// regardless of the value of n: the empty set is the only set
// with zero elements.
if (k == 0)
{
yield return TinySet.Empty;
yield break;
}
// Base case: if n < k then there can be no set of exactly
// k elements containing values from 0 to n - 1, because sets
// do not contain repeated elements.
if (n < k)
yield break;
// A set containing k elements where each is an integer from
// 0 to n - 2 is also a set of k elements where each is an
// integer from 0 to n - 1, so yield all of those.
foreach(var r in Combinations(n-1, k))
yield return r;
// If we add n - 1 to all the sets of k - 1 elements where each
// is an integer from 0 to n - 2, then we get a set of k elements
// where each is an integer from 0 to n - 1.
foreach(var r in Combinations(n-1, k-1))
yield return r.Add(n-1);
}
Run Code Online (Sandbox Code Playgroud)
在您的情况下,代码的工作方式如下:
return k == 0
// if we are done, return empty array
? new[] {new T[0]}
// for each element and each number from 0 to enumerable size
: elements.SelectMany((e, i) =>
elements
//skip first i elements, as we already produced combination with them
.Skip(i + 1)
//get all the combinations with size k - 1
.Combinations(k - 1)
//add current element to all produced combinations
.Select(c => (new[] {e}).Concat(c)));
Run Code Online (Sandbox Code Playgroud)
这种非递归形式的代码将非常庞大且难以理解,尝试理解递归:
比方说,我们有5个元素IEnumerable:{ 16, 13, 2, 4, 100 },我们需要它的所有组合,大小为2(结果集的总数等于从2到2的二项式系数= 5! / (2! * 3!) = 10)
您的代码将生成:
16我们需要所有尺寸的组合1,从第二个位置开始:13我们需要0从第三个位置开始的所有大小组合{ 16, 13 }13,对于元素,2我们需要0从第四个位置开始的所有大小组合{ 16, 2 }13, 2,对于元素,4我们需要0从第五个位置开始的所有大小组合{ 16, 4 }13, 2, 4,对于元素,100我们需要0从第六个位置开始的所有大小组合{ 16, 100 }13,2,4:{ 13, 2 },{ 13, 4 },{ 13, 100 },{ 2, 4 },{ 2, 100 },{ 4, 100 }我们得到了我们需要的所有10种组合.代码作者使用的重载是Enumerable.SelectMany<TSource, TResult> Method (IEnumerable<TSource>, Func<TSource, Int32, IEnumerable<TResult>>):
selector
类型:System.Func<TSource, Int32, IEnumerable<TResult>>
应用于每个源元素的转换函数;
函数的第二个参数表示源元素的索引.