Pav*_*vel 5 python algorithm dynamic-programming traveling-salesman
我想在 Python 中使用动态编程算法解决 TSP 问题。问题是:
伪代码是:
Let A = 2-D array, indexed by subsets of {1, 2, ,3, ..., n} that contains 1 and destinations j belongs to {1, 2, 3,...n}
1. Base case:
2. if S = {0}, then A[S, 1] = 0;
3. else, A[S, 1] = Infinity.
4.for m = 2, 3, ..., n: // m = subproblem size
5. for each subset of {1, 2,...,n} of size m that contains 1:
6. for each j belongs to S and j != 1:
7. A[S, j] = the least value of A[S-{j},k]+the distance of k and j for every k belongs to S that doesn't equal to j
8.Return the least value of A[{1,2..n},j]+the distance between j and 1 for every j = 2, 3,...n.
Run Code Online (Sandbox Code Playgroud)
我的困惑是:
如何使用子集索引列表,也就是如何有效地实现伪代码中的第 5 行。
小智 3
您可以将集合编码为整数:整数的第 i 位将代表第 i 个城市的状态(即我们是否将其纳入子集中)。
例如,35 10 = 100011 2将代表城市 {1, 2, 6}。这里我从最右边的位开始数,它代表城市 1。
为了使用子集的这种表示形式对列表进行索引,您应该创建长度为2 n的二维数组:
# Assuming n is given.
A = [[0 for i in xrange(n)] for j in xrange(2 ** n)]
Run Code Online (Sandbox Code Playgroud)
这是因为,使用 n 位整数,您可以表示 {1, 2, ..., n} 的每个子集(请记住,每位对应于一个城市)。
这种表示形式为您提供了许多不错的可能性:
# Check whether some city (1-indexed) is inside subset.
if (1 << (i - 1)) & x:
print 'city %d is inside subset!' % i
# In particular, checking for city #1 is super-easy:
if x & 1:
print 'city 1 is inside subset!'
# Iterate over subsets with increasing cardinality:
subsets = range(1, 2 ** n)
for subset in sorted(subsets, key=lambda x: bin(x).count('1')):
print subset,
# For n=4 prints "1 2 4 8 3 5 6 9 10 12 7 11 13 14 15"
# Obtain a subset y, which is the same as x,
# except city #j (1-indexed) is removed:
y = x ^ (1 << (j - 1)) # Note that city #j must be inside x.
Run Code Online (Sandbox Code Playgroud)
这就是我实现伪代码的方式(警告:未进行测试):
# INFINITY and n are defined somewhere above.
A = [[INFINITY for i in xrange(n)] for j in xrange(2 ** n)]
# Base case (I guess it should read "if S = {1}, then A[S, 1] = 0",
because otherwise S = {0} is not a valid index to A, according to line #1)
A[1][1] = 0
# Iterate over all subsets:
subsets = range(1, 2 ** n)
for subset in sorted(subsets, key=lambda x: bin(x).count('1')):
if not subset & 1:
# City #1 is not presented.
continue
for j in xrange(2, n + 1):
if not (1 << (j - 1)) & subset:
# City #j is not presented.
continue
for k in xrange(1, n + 1):
if k == j or not (1 << (k - 1)) & subset:
continue
A[subset][j] = min(A[subset][j], A[subset ^ (1 << (j - 1))][k] + get_dist(j, k))
Run Code Online (Sandbox Code Playgroud)
除了拥有实现伪代码所需的所有功能之外,这种方法将比元组\字典更快。