Dun*_*ncs 5 c++ opencv memory-management image
我创建了一个DLL,用户可以从文件名或流中读取图像,如下所示:
std::string filePath = "SomeImage.bmp";
// (1) Reading from a file
Image2D img1;
img1.readImage(filePath);
// (2) Reading from a stream
std::ifstream imgStream (filePath.c_str(), std::ios::binary);
Image2D img2;
img2.readImage(imgStream);
第一个readImage(filePath)是使用cv::imread(filePath)合理快速实现的(对于600 x 900图像,平均为0.001秒).然而,第二版本readImage(fileStream)被实现使用cv::imdecode它是相当慢(平均2.5秒对于相同的图像).
是否有任何替代品cv::imdecode,我可以不考虑这么长的时间从存储器缓冲器的图像解码?这是经常使用的应用程序的核心组件,因此必须快速.
任何援助将不胜感激.提前致谢.
编辑:
我用计时器测量时间.这对我也没有意义.我不明白为什么时间上存在如此大的差距.Image2D只是一个OpenCV矩阵作为成员的类.readImage功能的实现简化如下:
int Image2D::readImage(std::ifstream& input)
{       
    input.seekg(0, std::ios::end);
    size_t fileSize = input.tellg();
    input.seekg(0, std::ios::beg);
    if (fileSize == 0) {
        return 1;
    }
    std::vector<unsigned char> data(fileSize);
    input.read(reinterpret_cast<char*>(&data[0]), sizeof(unsigned char) * fileSize);
    if (!input) {
        return 1;
    }
    StopWatch stopWatch;
    mImg = cv::imdecode(cv::Mat(data), CV_LOAD_IMAGE_COLOR);
    std::cout << "Time to decode: " << stopWatch.getElapsedTime() << std::endl;
    return 0;
}
int Image2D::readImage(const std::string& fileName)
{
    StopWatch stopWatch;
    mImg = cv::imread(fileName, CV_LOAD_IMAGE_COLOR);
    std::cout << "Time to read image: " << stopWatch.getElapsedTime() << std::endl;
    return 0;
}
这就是我测试您的代码的方式,也许您可以尝试相同的方法(在一个干净的项目中)来比较结果。
对我来说,时间测量(CPU时间,不是墙上时间)说解码字节流比读取图像要快一点(这是有道理的) - Windows - VC 2010 OpenCV 2.49
#include <fstream>
cv::Mat MreadImage(std::ifstream& input)
{       
    input.seekg(0, std::ios::end);
    size_t fileSize = input.tellg();
    input.seekg(0, std::ios::beg);
    if (fileSize == 0) {
        return cv::Mat();
    }
    std::vector<unsigned char> data(fileSize);
    input.read(reinterpret_cast<char*>(&data[0]), sizeof(unsigned char) * fileSize);
    if (!input) {
        return cv::Mat();
    }
    clock_t startTime = clock();
    cv::Mat mImg = cv::imdecode(cv::Mat(data), CV_LOAD_IMAGE_COLOR);
    clock_t endTime = clock();
    std::cout << "Time to decode image: " << (float)(endTime-startTime)/(float)CLOCKS_PER_SEC << std::endl;
    return mImg;
}
cv::Mat MreadImage(const std::string& fileName)
{
    clock_t startTime = clock();
    cv::Mat mImg = cv::imread(fileName, CV_LOAD_IMAGE_COLOR);
    clock_t endTime = clock();
    std::cout << "Time to read image: " << (float)(endTime-startTime)/(float)CLOCKS_PER_SEC << std::endl;
    return mImg;
}
// test speed of imread vs imdecode
int main()
{
    //std::string path = "../inputData/Lenna.png";
    //std::string path = "../inputData/Aachen_Germany_Imperial-Cathedral-01.jpg";
    std::string path = "../inputData/bmp.bmp";
    cv::Mat i1 = MreadImage(path);
    std::ifstream imgStream (path.c_str(), std::ios::binary);
    cv::Mat i2 = MreadImage(imgStream);
    cv::imshow("input 1", i1);
    cv::imshow("input 2", i2);
    cv::waitKey(0);
    return 0;
}
| 归档时间: | 
 | 
| 查看次数: | 2650 次 | 
| 最近记录: |