在Python中实现MATLAB的im2col"滑动"

Sco*_*ott 15 python performance numpy image-processing python-2.7

问:如何加快速度?

下面是我对Matlab的im2col '滑动'的实现,以及返回每个第n列的附加功能.该函数采用图像(或任意2个暗淡的数组)并从左到右,从上到下滑动,拾取给定大小的每个重叠子图像,并返回其列为子图像的数组.

import numpy as np

def im2col_sliding(image, block_size, skip=1):

    rows, cols = image.shape
    horz_blocks = cols - block_size[1] + 1
    vert_blocks = rows - block_size[0] + 1

    output_vectors = np.zeros((block_size[0] * block_size[1], horz_blocks * vert_blocks))
    itr = 0
    for v_b in xrange(vert_blocks):
        for h_b in xrange(horz_blocks):
            output_vectors[:, itr] = image[v_b: v_b + block_size[0], h_b: h_b + block_size[1]].ravel()
            itr += 1

    return output_vectors[:, ::skip]
Run Code Online (Sandbox Code Playgroud)

例:

a = np.arange(16).reshape(4, 4)
print a
print im2col_sliding(a, (2, 2))  # return every overlapping 2x2 patch
print im2col_sliding(a, (2, 2), 4)  # return every 4th vector
Run Code Online (Sandbox Code Playgroud)

收益:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]]
[[  0.   1.   2.   4.   5.   6.   8.   9.  10.]
 [  1.   2.   3.   5.   6.   7.   9.  10.  11.]
 [  4.   5.   6.   8.   9.  10.  12.  13.  14.]
 [  5.   6.   7.   9.  10.  11.  13.  14.  15.]]
[[  0.   5.  10.]
 [  1.   6.  11.]
 [  4.   9.  14.]
 [  5.  10.  15.]]
Run Code Online (Sandbox Code Playgroud)

性能不是很好,特别是考虑到我是否调用im2col_sliding(big_matrix, (8, 8))(62001列)或im2col_sliding(big_matrix, (8, 8), 10)(6201列;仅保留每10个向量)它将花费相同的时间[big_matrix的大小为256 x 256].

我正在寻找任何想法加快这一点.

Div*_*kar 25

方法#1

我们可以broadcasting在这里使用一些来获取所有那些滑动窗口的所有索引,因此索引实现了vectorized solution.这是受到启发的Efficient Implementation of im2col and col2im.

这是实施 -

def im2col_sliding_broadcasting(A, BSZ, stepsize=1):
    # Parameters
    M,N = A.shape
    col_extent = N - BSZ[1] + 1
    row_extent = M - BSZ[0] + 1

    # Get Starting block indices
    start_idx = np.arange(BSZ[0])[:,None]*N + np.arange(BSZ[1])

    # Get offsetted indices across the height and width of input array
    offset_idx = np.arange(row_extent)[:,None]*N + np.arange(col_extent)

    # Get all actual indices & index into input array for final output
    return np.take (A,start_idx.ravel()[:,None] + offset_idx.ravel()[::stepsize])
Run Code Online (Sandbox Code Playgroud)

方法#2

使用新获得的知识NumPy array strides让我们创建这样的滑动窗口,我们将有另一个有效的解决方案 -

def im2col_sliding_strided(A, BSZ, stepsize=1):
    # Parameters
    m,n = A.shape
    s0, s1 = A.strides    
    nrows = m-BSZ[0]+1
    ncols = n-BSZ[1]+1
    shp = BSZ[0],BSZ[1],nrows,ncols
    strd = s0,s1,s0,s1

    out_view = np.lib.stride_tricks.as_strided(A, shape=shp, strides=strd)
    return out_view.reshape(BSZ[0]*BSZ[1],-1)[:,::stepsize]
Run Code Online (Sandbox Code Playgroud)

方法#3

前一种方法中列出的跨步方法已被纳入scikit-image模块中,以便更简洁,如此 -

from skimage.util import view_as_windows as viewW

def im2col_sliding_strided_v2(A, BSZ, stepsize=1):
    return viewW(A, (BSZ[0],BSZ[1])).reshape(-1,BSZ[0]*BSZ[1]).T[:,::stepsize]
Run Code Online (Sandbox Code Playgroud)

样品运行 -

In [106]: a      # Input array
Out[106]: 
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14],
       [15, 16, 17, 18, 19]])

In [107]: im2col_sliding_broadcasting(a, (2,3))
Out[107]: 
array([[ 0,  1,  2,  5,  6,  7, 10, 11, 12],
       [ 1,  2,  3,  6,  7,  8, 11, 12, 13],
       [ 2,  3,  4,  7,  8,  9, 12, 13, 14],
       [ 5,  6,  7, 10, 11, 12, 15, 16, 17],
       [ 6,  7,  8, 11, 12, 13, 16, 17, 18],
       [ 7,  8,  9, 12, 13, 14, 17, 18, 19]])

In [108]: im2col_sliding_broadcasting(a, (2,3), stepsize=2)
Out[108]: 
array([[ 0,  2,  6, 10, 12],
       [ 1,  3,  7, 11, 13],
       [ 2,  4,  8, 12, 14],
       [ 5,  7, 11, 15, 17],
       [ 6,  8, 12, 16, 18],
       [ 7,  9, 13, 17, 19]])
Run Code Online (Sandbox Code Playgroud)

运行时测试

In [183]: a = np.random.randint(0,255,(1024,1024))

In [184]: %timeit im2col_sliding(img, (8,8), skip=1)
     ...: %timeit im2col_sliding_broadcasting(img, (8,8), stepsize=1)
     ...: %timeit im2col_sliding_strided(img, (8,8), stepsize=1)
     ...: %timeit im2col_sliding_strided_v2(img, (8,8), stepsize=1)
     ...: 
1 loops, best of 3: 1.29 s per loop
1 loops, best of 3: 226 ms per loop
10 loops, best of 3: 84.5 ms per loop
10 loops, best of 3: 111 ms per loop

In [185]: %timeit im2col_sliding(img, (8,8), skip=4)
     ...: %timeit im2col_sliding_broadcasting(img, (8,8), stepsize=4)
     ...: %timeit im2col_sliding_strided(img, (8,8), stepsize=4)
     ...: %timeit im2col_sliding_strided_v2(img, (8,8), stepsize=4)
     ...: 
1 loops, best of 3: 1.31 s per loop
10 loops, best of 3: 104 ms per loop
10 loops, best of 3: 84.4 ms per loop
10 loops, best of 3: 109 ms per loop
Run Code Online (Sandbox Code Playgroud)

大约16x有超过原来糊涂的版本跨入方法加速那里!

  • 我知道我不应该(规则),但这只是让我大吃一惊.它花了一小堆文件来弄清楚它为什么会起作用,并且它中有很多整齐的numpy矩阵操作属性.如果可以的话,我会两次给你买啤酒\ upvote.谢谢,这只是我的晚上. (4认同)
  • @ljetibo谢谢!您的评论也很吸引我!好吧,我不正确地从MATLAB跳到Numpy,如何使用for循环,称其为boon或curse,但是我很喜欢它,特别是因为在numpy中循环似乎很昂贵。另外,最近,我偶然发现了这个漂亮的工具“ np.take”,以前我无法在任何SO问题上使用它,但是非常适合。好吧,欣赏好话!:) (2认同)

小智 6

对于不同图像通道上的滑动窗口,我们可以使用Divakar @ Implement MATLAB在Python中提供的im2col'滑动'提供的代码的更新版本,即

import numpy as np
A = np.random.randint(0,9,(2,4,4)) # Sample input array
                    # Sample blocksize (rows x columns)
B = [2,2]
skip=[2,2]
# Parameters 
D,M,N = A.shape
col_extent = N - B[1] + 1
row_extent = M - B[0] + 1

# Get Starting block indices
start_idx = np.arange(B[0])[:,None]*N + np.arange(B[1])

# Generate Depth indeces
didx=M*N*np.arange(D)
start_idx=(didx[:,None]+start_idx.ravel()).reshape((-1,B[0],B[1]))

# Get offsetted indices across the height and width of input array
offset_idx = np.arange(row_extent)[:,None]*N + np.arange(col_extent)

# Get all actual indices & index into input array for final output
out = np.take (A,start_idx.ravel()[:,None] + offset_idx[::skip[0],::skip[1]].ravel())
Run Code Online (Sandbox Code Playgroud)

测试 样品运行

A=
[[[6 2 8 5]
[6 4 7 6]
[8 6 5 2]
[3 1 3 7]]

[[6 0 4 3]
[7 6 4 6]
[2 6 7 1]
[7 6 7 7]]]

out=
[6 8 8 5]
[2 5 6 2]
[6 7 3 3]
[4 6 1 7]
[6 4 2 7]
[0 3 6 1]
[7 4 7 7]
[6 6 6 7]
Run Code Online (Sandbox Code Playgroud)