Apache Spark YARN模式启动时间过长(10秒以上)

zeo*_*dtr 14 hadoop hadoop-yarn apache-spark

我正在使用YARN-client或YARN-cluster模式运行spark应用程序.

但启动似乎需要很长时间.

初始化spark上下文需要10秒以上.

这是正常的吗?还是可以优化?

环境如下:

  • Hadoop:Hortonworks HDP 2.2(Hadoop 2.6)(具有3个数据节点的微小测试集群)
  • Spark:1.3.1
  • 客户端:Windows 7,但在CentOS 6.6上的结果相似

以下是应用程序日志的启动部分.(编辑了一些私人信息)

'Main:在第一行初始化上下文'和'MainProcessor:在最后一行删除以前的输出文件'是应用程序的日志.其他人来自Spark本身.显示此日志后将执行应用程序逻辑.

15/05/07 09:18:31 INFO Main: Initializing context
15/05/07 09:18:31 INFO SparkContext: Running Spark version 1.3.1
15/05/07 09:18:31 INFO SecurityManager: Changing view acls to: myuser,myapp
15/05/07 09:18:31 INFO SecurityManager: Changing modify acls to: myuser,myapp
15/05/07 09:18:31 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(myuser, myapp); users with modify permissions: Set(myuser, myapp)
15/05/07 09:18:31 INFO Slf4jLogger: Slf4jLogger started
15/05/07 09:18:31 INFO Remoting: Starting remoting
15/05/07 09:18:31 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@mymachine:54449]
15/05/07 09:18:31 INFO Utils: Successfully started service 'sparkDriver' on port 54449.
15/05/07 09:18:31 INFO SparkEnv: Registering MapOutputTracker
15/05/07 09:18:32 INFO SparkEnv: Registering BlockManagerMaster
15/05/07 09:18:32 INFO DiskBlockManager: Created local directory at C:\Users\myuser\AppData\Local\Temp\spark-2d3db9d6-ea78-438e-956f-be9c1dcf3a9d\blockmgr-e9ade223-a4b8-4d9f-b038-efd66adf9772
15/05/07 09:18:32 INFO MemoryStore: MemoryStore started with capacity 1956.7 MB
15/05/07 09:18:32 INFO HttpFileServer: HTTP File server directory is C:\Users\myuser\AppData\Local\Temp\spark-ff40d73b-e8ab-433e-88c4-35da27fb6278\httpd-def9220f-ac3a-4dd2-9ac1-2c593b94b2d9
15/05/07 09:18:32 INFO HttpServer: Starting HTTP Server
15/05/07 09:18:32 INFO Server: jetty-8.y.z-SNAPSHOT
15/05/07 09:18:32 INFO AbstractConnector: Started SocketConnector@0.0.0.0:54450
15/05/07 09:18:32 INFO Utils: Successfully started service 'HTTP file server' on port 54450.
15/05/07 09:18:32 INFO SparkEnv: Registering OutputCommitCoordinator
15/05/07 09:18:32 INFO Server: jetty-8.y.z-SNAPSHOT
15/05/07 09:18:32 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
15/05/07 09:18:32 INFO Utils: Successfully started service 'SparkUI' on port 4040.
15/05/07 09:18:32 INFO SparkUI: Started SparkUI at http://mymachine:4040
15/05/07 09:18:32 INFO SparkContext: Added JAR file:/D:/Projects/MyApp/MyApp.jar at http://10.111.111.199:54450/jars/MyApp.jar with timestamp 1430957912240
15/05/07 09:18:32 INFO RMProxy: Connecting to ResourceManager at cluster01/10.111.111.11:8050
15/05/07 09:18:32 INFO Client: Requesting a new application from cluster with 3 NodeManagers
15/05/07 09:18:32 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (23040 MB per container)
15/05/07 09:18:32 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
15/05/07 09:18:32 INFO Client: Setting up container launch context for our AM
15/05/07 09:18:32 INFO Client: Preparing resources for our AM container
15/05/07 09:18:32 INFO Client: Source and destination file systems are the same. Not copying hdfs://cluster01/apps/spark/spark-assembly-1.3.1-hadoop2.6.0.jar
15/05/07 09:18:32 INFO Client: Setting up the launch environment for our AM container
15/05/07 09:18:33 INFO SecurityManager: Changing view acls to: myuser,myapp
15/05/07 09:18:33 INFO SecurityManager: Changing modify acls to: myuser,myapp
15/05/07 09:18:33 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(myuser, myapp); users with modify permissions: Set(myuser, myapp)
15/05/07 09:18:33 INFO Client: Submitting application 2 to ResourceManager
15/05/07 09:18:33 INFO YarnClientImpl: Submitted application application_1430956687773_0002
15/05/07 09:18:34 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:34 INFO Client: 
     client token: N/A
     diagnostics: N/A
     ApplicationMaster host: N/A
     ApplicationMaster RPC port: -1
     queue: default
     start time: 1430957906540
     final status: UNDEFINED
     tracking URL: http://cluster01:8088/proxy/application_1430956687773_0002/
     user: myapp
15/05/07 09:18:35 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:36 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:37 INFO Client: Application report for application_1430956687773_0002 (state: ACCEPTED)
15/05/07 09:18:37 INFO YarnClientSchedulerBackend: ApplicationMaster registered as Actor[akka.tcp://sparkYarnAM@cluster02:39698/user/YarnAM#-1579648782]
15/05/07 09:18:37 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> cluster01, PROXY_URI_BASES -> http://cluster01:8088/proxy/application_1430956687773_0002), /proxy/application_1430956687773_0002
15/05/07 09:18:37 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
15/05/07 09:18:38 INFO Client: Application report for application_1430956687773_0002 (state: RUNNING)
15/05/07 09:18:38 INFO Client: 
     client token: N/A
     diagnostics: N/A
     ApplicationMaster host: cluster02
     ApplicationMaster RPC port: 0
     queue: default
     start time: 1430957906540
     final status: UNDEFINED
     tracking URL: http://cluster01:8088/proxy/application_1430956687773_0002/
     user: myapp
15/05/07 09:18:38 INFO YarnClientSchedulerBackend: Application application_1430956687773_0002 has started running.
15/05/07 09:18:38 INFO NettyBlockTransferService: Server created on 54491
15/05/07 09:18:38 INFO BlockManagerMaster: Trying to register BlockManager
15/05/07 09:18:38 INFO BlockManagerMasterActor: Registering block manager mymachine:54491 with 1956.7 MB RAM, BlockManagerId(<driver>, mymachine, 54491)
15/05/07 09:18:38 INFO BlockManagerMaster: Registered BlockManager
15/05/07 09:18:43 INFO YarnClientSchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@cluster02:44996/user/Executor#-786778979] with ID 1
15/05/07 09:18:43 INFO YarnClientSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.8
15/05/07 09:18:43 INFO MainProcessor: Deleting previous output files
Run Code Online (Sandbox Code Playgroud)

谢谢.

UPDATE

我想我已经找到了(可能是部分的,但主要的)原因.

它位于以下行之间:

15/05/08 11:36:32 INFO BlockManagerMaster: Registered BlockManager
15/05/08 11:36:38 INFO YarnClientSchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@cluster04:55237/user/Executor#-149550753] with ID 1
Run Code Online (Sandbox Code Playgroud)

当我在群集端读取日志时,发现以下行:(确切的时间与上面的行不同,但它是机器之间的差异)

15/05/08 11:36:23 INFO yarn.ApplicationMaster: Started progress reporter thread - sleep time : 5000
15/05/08 11:36:28 INFO impl.AMRMClientImpl: Received new token for : cluster04:45454
Run Code Online (Sandbox Code Playgroud)

看起来Spark故意睡了5秒钟.

我已经阅读了Spark源代码,并且在org.apache.spark.deploy.yarn.ApplicationMaster.scala中,launchReporterThread()获得了该代码.它循环调用allocator.allocateResources()和Thread.sleep().对于sleep,它读取配置变量spark.yarn.scheduler.heartbeat.interval-ms(默认值为5000,即5秒).根据评论,"我们希望在没有对RM提出太多请求的情况下做出合理的响应".因此,除非YARN立即满足分配请求,否则似乎将浪费5秒.

当我将配置变量修改为1000时,它只等待1秒.

以下是更改后的日志行:

15/05/08 11:47:21 INFO yarn.ApplicationMaster: Started progress reporter thread - sleep time : 1000
15/05/08 11:47:22 INFO impl.AMRMClientImpl: Received new token for : cluster04:45454
Run Code Online (Sandbox Code Playgroud)

4秒保存.

因此,当一个人不想等待5秒时,可以更改spark.yarn.scheduler.heartbeat.interval-ms.

我希望它产生的额外开销可以忽略不计.

UPDATE

相关的JIRA问题已经开启并得到解决.请参阅https://issues.apache.org/jira/browse/SPARK-7533

Dav*_*fin 4

这是非常典型的。我的系统从运行 Spark-Submit 到获取 SparkContext 大约需要 20 秒。

正如文档中多处所述,解决方案是将驱动程序转变为 RPC 服务器。这样,您可以初始化一次,然后其他应用程序就可以将驱动程序的上下文用作服务。

我正在对我的应用程序执行此操作。我正在使用 http4s 并将我的驱动程序变成一个网络服务器。