嵌套的ifelse()是最糟糕的; 什么是最好的?

Ale*_*ock 8 if-statement r

编辑:这是如何在R中有效实现合并的一个骗局,同意.我没有意识到我的问题比我的具体应用更普遍,所以这个讨论很棒.

有时,随机实验中的响应变量包含在每个实验组的不同列中(下面的代码中为Y_1到Y_5).通常最好将响应变量收集到一个列(Y_all)中.我最终这样做,如下例所示.但我确定有更好的方法.想法?

set.seed(343)
N <- 1000
group <- sample(1:5, N, replace=TRUE)
Y_1 <- ifelse(group==1, rbinom(sum(group==1), 1, .5), NA)
Y_2 <- ifelse(group==2, rbinom(sum(group==2), 1, .5), NA)
Y_3 <- ifelse(group==3, rbinom(sum(group==3), 1, .5), NA)
Y_4 <- ifelse(group==4, rbinom(sum(group==4), 1, .5), NA)
Y_5 <- ifelse(group==5, rbinom(sum(group==5), 1, .5), NA)

## This is the part I want to make more efficient
Y_all <- ifelse(!is.na(Y_1), Y_1, 
                ifelse(!is.na(Y_2), Y_2, 
                       ifelse(!is.na(Y_3), Y_3, 
                              ifelse(!is.na(Y_4), Y_4, 
                                     ifelse(!is.na(Y_5), Y_5, 
                                            NA)))))

table(Y_all, Y_1, exclude = NULL)
table(Y_all, Y_2, exclude = NULL)
Run Code Online (Sandbox Code Playgroud)

MrF*_*ick 5

我喜欢用这个coalesce()功能

#available from https://gist.github.com/MrFlick/10205794
coalesce<-function(...) {
    x<-lapply(list(...), function(z) {if (is.factor(z)) as.character(z) else z})
    m<-is.na(x[[1]])
    i<-2
    while(any(m) & i<=length(x)) {
        if ( length(x[[i]])==length(x[[1]])) {
            x[[1]][m]<-x[[i]][m]
        } else if (length(x[[i]])==1) {
            x[[1]][m]<-x[[i]]
        } else {
            stop(paste("length mismatch in argument",i," - found:", length( x[[i]] ),"expected:",length( x[[1]] ) ))
        }
        m<-is.na(x[[1]])
        i<-i+1
    }
    return(x[[1]])
}
Run Code Online (Sandbox Code Playgroud)

那你可以做

Y_all <- coalesce(Y_1,Y_2,Y_3,Y_4,Y_5)
Run Code Online (Sandbox Code Playgroud)

当然,这非常特定于获得第一个非NA值.