将包含多行JSON的文件加载到Python的Pandas中

use*_*198 63 python json python-2.7 pandas

我试图在json文件中读入pandas数据框.这是json文件的第一行:

{"votes": {"funny": 0, "useful": 0, "cool": 0}, "user_id": "P_Mk0ygOilLJo4_WEvabAA", "review_id": "OeT5kgUOe3vcN7H6ImVmZQ", "stars": 3, "date": "2005-08-26", "text": "This is a pretty typical cafe.  The sandwiches and wraps are good but a little overpriced and the food items are the same.  The chicken caesar salad wrap is my favorite here but everything else is pretty much par for the course.", "type": "review", "business_id": "Jp9svt7sRT4zwdbzQ8KQmw"}
Run Code Online (Sandbox Code Playgroud)

我正在尝试执行以下操作:df = pd.read_json(path) 我收到以下错误(完全回溯):

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/d/anaconda/lib/python2.7/site-packages/pandas/io/json.py", line 198, in read_json
    date_unit).parse()
  File "/Users/d/anaconda/lib/python2.7/site-packages/pandas/io/json.py", line 266, in parse
    self._parse_no_numpy()
  File "/Users/d/anaconda/lib/python2.7/site-packages/pandas/io/json.py", line 483, in _parse_no_numpy
    loads(json, precise_float=self.precise_float), dtype=None)
ValueError: Trailing data
Run Code Online (Sandbox Code Playgroud)

什么是Trailing data错误?如何将其读入数据框?

编辑: 根据一些建议,这里有几行.json文件:

{"votes": {"funny": 0, "useful": 0, "cool": 0}, "user_id": "P_Mk0ygOilLJo4_WEvabAA", "review_id": "OeT5kgUOe3vcN7H6ImVmZQ", "stars": 3, "date": "2005-08-26", "text": "This is a pretty typical cafe.  The sandwiches and wraps are good but a little overpriced and the food items are the same.  The chicken caesar salad wrap is my favorite here but everything else is pretty much par for the course.", "type": "review", "business_id": "Jp9svt7sRT4zwdbzQ8KQmw"}
{"votes": {"funny": 0, "useful": 0, "cool": 0}, "user_id": "TNJRTBrl0yjtpAACr1Bthg", "review_id": "qq3zF2dDUh3EjMDuKBqhEA", "stars": 3, "date": "2005-11-23", "text": "I agree with other reviewers - this is a pretty typical financial district cafe.  However, they have fantastic pies.  I ordered three pies for an office event (apple, pumpkin cheesecake, and pecan) - all were delicious, particularly the cheesecake.  The sucker weighed in about 4 pounds - no joke.\n\nNo surprises on the cafe side - great pies and cakes from the catering business.", "type": "review", "business_id": "Jp9svt7sRT4zwdbzQ8KQmw"}
{"votes": {"funny": 0, "useful": 0, "cool": 0}, "user_id": "H_mngeK3DmjlOu595zZMsA", "review_id": "i3eQTINJXe3WUmyIpvhE9w", "stars": 3, "date": "2005-11-23", "text": "Decent enough food, but very overpriced. Just a large soup is almost $5. Their specials are $6.50, and with an overpriced soda or juice, it's approaching $10. A bit much for a cafe lunch!", "type": "review", "business_id": "Jp9svt7sRT4zwdbzQ8KQmw"}
Run Code Online (Sandbox Code Playgroud)

我使用的这个.json文件按照规范在每一行中包含一个json对象.

我按照建议尝试了jsonlint.com网站,它给出了以下错误:

Parse error on line 14:
...t7sRT4zwdbzQ8KQmw"}{    "votes": {
----------------------^
Expecting 'EOF', '}', ',', ']'
Run Code Online (Sandbox Code Playgroud)

And*_*rew 166

从Pandas版本0.19.0开始,您可以使用lines参数,如下所示:

import pandas as pd

data = pd.read_json('/path/to/file.json', lines=True)
Run Code Online (Sandbox Code Playgroud)


Art*_*tem 33

你必须逐行阅读.例如,您可以在reddit上使用ryptophan提供的以下代码:

import pandas as pd

# read the entire file into a python array
with open('your.json', 'rb') as f:
    data = f.readlines()

# remove the trailing "\n" from each line
data = map(lambda x: x.rstrip(), data)

# each element of 'data' is an individual JSON object.
# i want to convert it into an *array* of JSON objects
# which, in and of itself, is one large JSON object
# basically... add square brackets to the beginning
# and end, and have all the individual business JSON objects
# separated by a comma
data_json_str = "[" + ','.join(data) + "]"

# now, load it into pandas
data_df = pd.read_json(data_json_str)
Run Code Online (Sandbox Code Playgroud)


小智 5

以下代码帮助我将JSON内容加载到dataframe

import json
import pandas as pd

with open('Appointment.json', encoding="utf8") as f:
    data = f.readlines()
    data = [json.loads(line) for line in data] #convert string to dict format
df = pd.read_json(data) # Load into dataframe
Run Code Online (Sandbox Code Playgroud)