pyt*_*ner 3 python ipython pandas
嗨,我正在学习数据科学,正在尝试从各个行业的公司列表中制作大数据公司列表。
我有一个大数据公司的行号列表,名为 comp_rows。现在,我正在尝试根据行号使用过滤后的公司创建一个新的数据框。在这里,我需要向现有数据帧添加行,但出现错误。有人可以帮忙吗?
我的数据帧看起来像这样。
company_url company tag_line product data
0 https://angel.co/billguard BillGuard The fastest smartest way to track your spendin... BillGuard is a personal finance security app t... New York City · Financial Services · Security ...
1 https://angel.co/tradesparq Tradesparq The world's largest social network for global ... Tradesparq is Alibaba.com meets LinkedIn. Trad... Shanghai · B2B · Marketplaces · Big Data · Soc...
2 https://angel.co/sidewalk Sidewalk Hoovers (D&B) for the social era Sidewalk helps companies close more sales to s... New York City · Lead Generation · Big Data · S...
3 https://angel.co/pangia Pangia The Internet of Things Platform: Big data mana... We collect and manage data from sensors embedd... San Francisco · SaaS · Clean Technology · Big ...
4 https://angel.co/thinknum Thinknum Financial Data Analysis Thinknum is a powerful web platform to value c... New York City · Enterprise Software · Financia...
Run Code Online (Sandbox Code Playgroud)
我的代码如下:
bigdata_comp = DataFrame(data=None,columns=['company_url','company','tag_line','product','data'])
for count, item in enumerate(data.iterrows()):
for number in comp_rows:
if int(count) == int(number):
bigdata_comp.append(item)
Run Code Online (Sandbox Code Playgroud)
错误:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-234-1e4ea9bd9faa> in <module>()
4 for number in comp_rows:
5 if int(count) == int(number):
----> 6 bigdata_comp.append(item)
7
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/pandas/core/frame.pyc in append(self, other, ignore_index, verify_integrity)
3814 from pandas.tools.merge import concat
3815 if isinstance(other, (list, tuple)):
-> 3816 to_concat = [self] + other
3817 else:
3818 to_concat = [self, other]
TypeError: can only concatenate list (not "tuple") to list
Run Code Online (Sandbox Code Playgroud)
您似乎正在尝试根据索引(存储在名为 的变量中comp_rows)过滤掉现有的数据框。您可以通过 using 在不使用循环的情况下执行此操作loc,如下所示:
In [1161]: df1.head()
Out[1161]:
A B C D
a 1.935094 -0.160579 -0.173458 0.433267
b 1.669632 -1.130893 -1.210353 0.822138
c 0.494622 1.014013 0.215655 1.045139
d -0.628889 0.223170 -0.616019 -0.264982
e -0.823133 0.385790 -0.654533 0.582255
Run Code Online (Sandbox Code Playgroud)
对于所有列,我们将获得索引为 'a'、'b' 和 'c' 的行:
In [1162]: df1.loc[['a','b','c'],:]
Out[1162]:
A B C D
a 1.935094 -0.160579 -0.173458 0.433267
b 1.669632 -1.130893 -1.210353 0.822138
c 0.494622 1.014013 0.215655 1.045139
Run Code Online (Sandbox Code Playgroud)
关于你的代码:
1. 您无需遍历列表即可查看其中是否存在项目:使用in运算符。例如 -
In [1199]: 1 in [1,2,3,4,5]
Out[1199]: True
Run Code Online (Sandbox Code Playgroud)
所以,而不是
for number in comp_rows:
if int(count) == int(number):
Run Code Online (Sandbox Code Playgroud)
做这个
if number in comp_rows
Run Code Online (Sandbox Code Playgroud)
2. 熊猫append不会就地发生。您必须将结果存储到另一个变量中。见这里。
3.
一次追加一行是一种缓慢的方式来做你想做的事。相反,将要添加的每一行保存到列表列表中,为其创建一个数据框,然后一次性将其附加到目标数据框。像这样的东西..
temp = []
for count, item in enumerate(df1.loc[['a','b','c'],:].iterrows()):
# if count in comp_rows:
temp.append( list(item[1]))
## -- End pasted text --
In [1233]: temp
Out[1233]:
[[1.9350940285526077,
-0.16057932637141861,
-0.17345827000000605,
0.43326722021644282],
[1.66963201034217,
-1.1308932586268696,
-1.2103527446031515,
0.82213753819050794],
[0.49462218161377397,
1.0140133740187862,
0.2156547595968879,
1.0451391564351897]]
In [1236]: df2 = df1.append(pd.DataFrame(temp, columns=['A','B','C','D']))
In [1237]: df2
Out[1237]:
A B C D
a 1.935094 -0.160579 -0.173458 0.433267
b 1.669632 -1.130893 -1.210353 0.822138
c 0.494622 1.014013 0.215655 1.045139
d -0.628889 0.223170 -0.616019 -0.264982
e -0.823133 0.385790 -0.654533 0.582255
f -0.872135 2.938475 -0.099367 -1.472519
0 1.935094 -0.160579 -0.173458 0.433267
1 1.669632 -1.130893 -1.210353 0.822138
2 0.494622 1.014013 0.215655 1.045139
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
20513 次 |
| 最近记录: |