再次坚持,希望更多的线索可以提供指针; o)
我有一个数据集; 3,270行datePublished(2013-04-01:2014-03-31)和域名(coindesk,forbes,mashable,nytimes,路透社,techcrunch,thenextweb&theverge).副本在这里)
> df <- read.csv("dplyr_summary_example.csv")
> head(df)
datePublished domain
1 2013-04-01 coindesk
2 2013-04-01 coindesk
3 2013-04-13 coindesk
4 2013-04-15 coindesk
5 2013-04-15 coindesk
Run Code Online (Sandbox Code Playgroud)
基本上,df在每次发布故事时都有一行日期/域对.
我想要做的是创建一个看起来有点像的新数据框(例如编号)...
datePublished coindeskStories forbesStories... thevergeStories totalStories
2013-04-01 2 1 1 4
2013-04-13 1 1 0 2
2013-04-15 2 0 1 3
Run Code Online (Sandbox Code Playgroud)
因此,对于df中的每个日期,我希望每个域的总故事列,最后总计列总数(总计的总数很容易).
我一直在看,dplyr它看起来确实可以完成这项工作,但到目前为止,我还没有设法一步到位.
对于每个域,然后加入东西是相当简单的:
daily <- group_by(df,datePublished) # group stories by date
cnt.nytimes <- filter(daily, domain=="nytimes") # filter just the nytimes ones
cnt.nytimes <- summarise(cnt.nytimes,nytimesStories=n()) # give table of stories by date
cnt.mashable <- filter(daily, domain=="mashable")
cnt.mashable <- summarise(cnt.mashable,mashableStories=n())
df.Stories <- full_join(cnt.nytimes,cnt.mashable,by="datePublished") # join cnt. dataframes by datePublished
df.Stories <- arrange(df.Stories,datePublished) #sort by datePublished
df.Stories$totalStories <- apply(df.Stories[c(2:3)],1,sum,na.rm=TRUE) #add a totals column
Run Code Online (Sandbox Code Playgroud)
但是在每个域上执行此操作然后使用连接似乎有点低效.
谁能建议更简单的路线?
关于什么 reshape2::dcast
require(reshape2)
res <- dcast(df, datePublished ~ domain, value.var = "domain", fun.aggregate = length)
Run Code Online (Sandbox Code Playgroud)
结果:
> head(res)
datePublished coindesk forbes mashable nytimes reuters techcrunch thenextweb theverge
1 2013-04-01 2 2 0 0 0 1 0 2
2 2013-04-02 0 1 1 0 0 0 0 0
3 2013-04-03 0 3 1 0 0 2 0 0
4 2013-04-04 0 0 0 0 0 1 1 1
5 2013-04-05 0 1 0 0 0 1 1 1
6 2013-04-07 0 1 0 1 0 1 0 0
Run Code Online (Sandbox Code Playgroud)
注释:如果您希望datePublished为Date而不是因子使用
df$datePublished <- as.Date(as.character(df$datePublished))
Run Code Online (Sandbox Code Playgroud)
之后 read.csv
要改变宽幅你需要使用tidyr除dplyr.就像是
library(dplyr)
library(tidyr)
df %>%
group_by(datePublished, domain) %>%
summarise(nstories = n()) %>%
spread(domain, nstories)
Run Code Online (Sandbox Code Playgroud)