jra*_*ara 3 r subset dataframe
我有这样的数据集
a <- data.frame(var1 = c("patientA", "patientA", "patientA", "patientB", "patientB", "patientB", "patientB"),
var2 = as.Date(c("2015-01-02","2015-01-04","2015-02-02","2015-02-06","2015-01-02","2015-01-07","2015-04-02")),
var3 = c(F, T, F, F, F, T, F)
)
sequ <- rle(as.character(a$var1))
a$sequ <- sequence(sequ$lengths)
Run Code Online (Sandbox Code Playgroud)
生产
> a
var1 var2 var3 sequ
1 patientA 2015-01-02 FALSE 1
2 patientA 2015-01-04 TRUE 2
3 patientA 2015-02-02 FALSE 3
4 patientB 2015-02-06 FALSE 1
5 patientB 2015-01-02 FALSE 2
6 patientB 2015-01-07 TRUE 3
7 patientB 2015-04-02 FALSE 4
Run Code Online (Sandbox Code Playgroud)
我如何对这个数据集进行子集化/过滤,以便获得var3 == TRUE和var2日期values的数据的数据的VAR3 == TRUE的行(患者,var1?我试过了)
subset(a, (var3 == TRUE) & (var2 > var3))
Run Code Online (Sandbox Code Playgroud)
但这不会产生正确的结果集.正确的是
# var1 var2 var3 sequ
# 1 patientA 2015-01-04 TRUE 2
# 2 patientA 2015-02-02 FALSE 3
# 3 patientB 2015-02-06 FALSE 1
# 4 patientB 2015-01-07 TRUE 3
# 5 patientB 2015-04-02 FALSE 4
Run Code Online (Sandbox Code Playgroud)
你可以试试data.table.在这里,我们将'data.frame'转换为'data.table'(setDT(a)),按'var1'分组,我们得到'var2'元素的逻辑索引,这些元素大于或等于对应的'var2'元素' var3'为TRUE并且是数据集的子集.SD.
library(data.table)
setDT(a)[,.SD[var2 >= var2[var3]], var1]
# var1 var2 var3 sequ
#1: patientA 2015-01-04 TRUE 2
#2: patientA 2015-02-02 FALSE 3
#3: patientB 2015-02-06 FALSE 1
#4: patientB 2015-01-07 TRUE 3
#5: patientB 2015-04-02 FALSE 4
Run Code Online (Sandbox Code Playgroud)
使用的选项base R(假设数据按'var1'排序)
a[with(a, var2>=rep(var2[var3], table(var1))),]
# var1 var2 var3 sequ
#2 patientA 2015-01-04 TRUE 2
#3 patientA 2015-02-02 FALSE 3
#4 patientB 2015-02-06 FALSE 1
#6 patientB 2015-01-07 TRUE 3
#7 patientB 2015-04-02 FALSE 4
Run Code Online (Sandbox Code Playgroud)