Had*_*621 10 algorithm performance big-o
你有一个数组大小n
和一个常量 k
(无论如何)
您可以假设该数组是int类型(尽管它可以是任何类型)
描述一种算法,该算法可以查找是否存在至少重复一次的元素n/k
...如果有返回的元素.在线性时间(O(n)
)中这样做
问题:使用常量内存执行此算法(甚至伪代码)并仅在阵列上运行两次
eri*_*son 11
我不是百分百肯定,但听起来你想要解决布兰妮斯皮尔斯问题 -使用常量记忆找到构成某个样本的某个部分的项目.
以下是对英文问题的陈述,并附有解决方案草图:
......来自麻省理工学院的Erik D. Demaine和加拿大滑铁卢大学的AlejandroLópez-Ortiz和J. Ian Munro的2002年文章.Demaine和他的同事扩展了算法以涵盖更一般的问题:给定长度为n的流,识别一组大小为m,其中包括频率大于n /(m + 1)的所有元素.(在m = 1的情况下,这会减少到多数问题.)扩展算法需要m个寄存器用于候选元素以及m个计数器.基本操作方案类似于多数算法.当流元素与候选者之一匹配时,相应的计数器递增; 当任何候选人都没有匹配时,所有的计数器都会减少; 如果计数器为0,
创建一个大小(k-1)的临时数组来存储元素及其计数(输出元素将在这些k-1元素中).
遍历输入数组并更新每个遍历元素的temp [](添加/删除元素或增加/减少计数).数组temp []在每一步都存储潜在的(k-1)候选者.此步骤需要O(nk)时间.
主要步骤是步骤2,如何在每个点保持(k-1)潜在候选人?步骤2中使用的步骤就像着名的游戏:俄罗斯方块.我们将每个数字视为俄罗斯方块中的一个部分,它在我们的临时数组temp []中落下.我们的任务是尝试将相同的数字堆叠在同一列上(临时数组中的计数递增).
Consider k = 4, n = 9
Given array: 3 1 2 2 2 1 4 3 3
i = 0
3 _ _
temp[] has one element, 3 with count 1
i = 1
3 1 _
temp[] has two elements, 3 and 1 with
counts 1 and 1 respectively
i = 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 1 respectively.
i = 3
- - 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 2 respectively.
i = 4
- - 2
- - 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 3 respectively.
i = 5
- - 2
- 1 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 2 and 3 respectively.
Now the question arises, what to do when temp[] is full and we see a new element – we remove the bottom row from stacks of elements, i.e., we decrease count of every element by 1 in temp[]. We ignore the current element.
i = 6
- - 2
- 1 2
temp[] has two elements, 1 and 2 with
counts as 1 and 2 respectively.
i = 7
- 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 1, 1 and 2 respectively.
i = 8
3 - 2
3 1 2
temp[] has three elements, 3, 1 and 2 with
counts as 2, 1 and 2 respectively.
Run Code Online (Sandbox Code Playgroud)
最后,我们在temp []中最多有k-1个数字.temp中的元素是{3,1,2}.请注意,temp []中的计数现在没用,仅在步骤2中需要计数.现在我们需要检查temp []中元素的实际计数是否大于n/k(9/4).元素3和2的计数超过9/4.所以我们打印3和2.
请注意,该算法不会遗漏任何输出元素.可能有两种可能性,许多事件在一起或分布在整个阵列中.如果出现在一起,那么count将很高并且不会变为0.如果发生了遍历,则元素将再次出现在temp []中.以下是上述算法的C++实现.
// A C++ program to print elements with count more than n/k
#include<iostream>
using namespace std;
// A structure to store an element and its current count
struct eleCount
{
int e; // Element
int c; // Count
};
// Prints elements with more than n/k occurrences in arr[] of
// size n. If there are no such elements, then it prints nothing.
void moreThanNdK(int arr[], int n, int k)
{
// k must be greater than 1 to get some output
if (k < 2)
return;
/* Step 1: Create a temporary array (contains element
and count) of size k-1. Initialize count of all
elements as 0 */
struct eleCount temp[k-1];
for (int i=0; i<k-1; i++)
temp[i].c = 0;
/* Step 2: Process all elements of input array */
for (int i = 0; i < n; i++)
{
int j;
/* If arr[i] is already present in
the element count array, then increment its count */
for (j=0; j<k-1; j++)
{
if (temp[j].e == arr[i])
{
temp[j].c += 1;
break;
}
}
/* If arr[i] is not present in temp[] */
if (j == k-1)
{
int l;
/* If there is position available in temp[], then place
arr[i] in the first available position and set count as 1*/
for (l=0; l<k-1; l++)
{
if (temp[l].c == 0)
{
temp[l].e = arr[i];
temp[l].c = 1;
break;
}
}
/* If all the position in the temp[] are filled, then
decrease count of every element by 1 */
if (l == k-1)
for (l=0; l<k; l++)
temp[l].c -= 1;
}
}
/*Step 3: Check actual counts of potential candidates in temp[]*/
for (int i=0; i<k-1; i++)
{
// Calculate actual count of elements
int ac = 0; // actual count
for (int j=0; j<n; j++)
if (arr[j] == temp[i].e)
ac++;
// If actual count is more than n/k, then print it
if (ac > n/k)
cout << "Number:" << temp[i].e
<< " Count:" << ac << endl;
}
}
/* Driver program to test above function */
int main()
{
cout << "First Test\n";
int arr1[] = {4, 5, 6, 7, 8, 4, 4};
int size = sizeof(arr1)/sizeof(arr1[0]);
int k = 3;
moreThanNdK(arr1, size, k);
cout << "\nSecond Test\n";
int arr2[] = {4, 2, 2, 7};
size = sizeof(arr2)/sizeof(arr2[0]);
k = 3;
moreThanNdK(arr2, size, k);
cout << "\nThird Test\n";
int arr3[] = {2, 7, 2};
size = sizeof(arr3)/sizeof(arr3[0]);
k = 2;
moreThanNdK(arr3, size, k);
cout << "\nFourth Test\n";
int arr4[] = {2, 3, 3, 2};
size = sizeof(arr4)/sizeof(arr4[0]);
k = 3;
moreThanNdK(arr4, size, k);
return 0;
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
3547 次 |
最近记录: |