Kev*_*n M 1 r rank quantile dataframe split-apply-combine
我试图使用函数创建新变量,lapply而不是使用循环在数据中正常工作.我曾经使用Stata,并且会用类似于此处讨论的方法解决这个问题.
由于在R中以编程方式命名变量是如此困难或至少是尴尬(并且似乎你不能使用索引assign),我已经将命名过程留到了之后lapply.然后我使用for循环在合并之前进行重命名,然后再用于合并.有更有效的方法吗?我该如何更换循环?我应该做某种重塑吗?
#Reproducible data
data <- data.frame("custID" = c(1:10, 1:20),
"v1" = rep(c("A", "B"), c(10,20)),
"v2" = c(30:21, 20:19, 1:3, 20:6), stringsAsFactors = TRUE)
#Function to analyze customer distribution for each category (v1)
pf <- function(cat, df) {
df <- df[df$v1 == cat,]
df <- df[order(-df$v2),]
#Divide the customers into top percents
nr <- nrow(df)
p10 <- round(nr * .10, 0)
cat("Number of people in the Top 10% :", p10, "\n")
p20 <- round(nr * .20, 0)
p11_20 <- p20-p10
cat("Number of people in the 11-20% :", p11_20, "\n")
#Keep only those customers in the top groups
df <- df[1:p20,]
#Create a variable to identify the percent group the customer is in
top_pct <- integer(length = p10 + p11_20)
#Identify those in each group
top_pct[1:p10] <- 10
top_pct[(p10+1):p20] <- 20
#Add this variable to the data frame
df$top_pct <- top_pct
#Keep only custID and the new variable
df <- subset(df, select = c(custID, top_pct))
return(df)
}
##Run the customer distribution function
v1Levels <- levels(data$v1)
res <- lapply(v1Levels, pf, df = data)
#Explore the results
summary(res)
# Length Class Mode
# [1,] 2 data.frame list
# [2,] 2 data.frame list
print(res)
# [[1]]
# custID top_pct
# 1 1 10
# 2 2 20
#
# [[2]]
# custID top_pct
# 11 1 10
# 16 6 10
# 12 2 20
# 17 7 20
##Merge the two data frames but with top_pct as a different variable for each category
#Change the new variable name
for(i in 1:length(res)) {
names(res[[i]])[2] <- paste0(v1Levels[i], "_top_pct")
}
#Merge the results
res_m <- res[[1]]
for(i in 2:length(res)) {
res_m <- merge(res_m, res[[i]], by = "custID", all = TRUE)
}
print(res_m)
# custID A_top_pct B_top_pct
# 1 1 10 10
# 2 2 20 20
# 3 6 NA 10
# 4 7 NA 20
Run Code Online (Sandbox Code Playgroud)
坚持你的Stata本能并使用单一数据集:
require(data.table)
DT <- data.table(data)
DT[,r:=rank(v2)/.N,by=v1]
Run Code Online (Sandbox Code Playgroud)
您可以通过键入来查看结果DT.
从这里,你可以组种内v1排名,r如果你想.遵循Stata成语......
DT[,g:={
x = rep(0,.N)
x[r>.8] = 20
x[r>.9] = 10
x
}]
Run Code Online (Sandbox Code Playgroud)
这就像gen两个replace ... if陈述一样.再次,您可以看到结果DT.
最后,您可以使用
DT[g>0]
Run Code Online (Sandbox Code Playgroud)
这使
custID v1 v2 r g
1: 1 A 30 1.000 10
2: 2 A 29 0.900 20
3: 1 B 20 0.975 10
4: 2 B 19 0.875 20
5: 6 B 20 0.975 10
6: 7 B 19 0.875 20
Run Code Online (Sandbox Code Playgroud)
这些步骤也可以链接在一起:
DT[,r:=rank(v2)/.N,by=v1][,g:={x = rep(0,.N);x[r>.8] = 20;x[r>.9] = 10;x}][g>0]
Run Code Online (Sandbox Code Playgroud)
(感谢@ExperimenteR :)
要重新排列OP中所需的输出,并v1使用列的值,请使用dcast:
dcast(
DT[,r:=rank(v2)/.N,by=v1][,g:={x = rep(0,.N);x[r>.8] = 20;x[r>.9] = 10;x}][g>0],
custID~v1)
Run Code Online (Sandbox Code Playgroud)
目前,dcast需要data.tableGithub提供的最新版本(我认为).
您不需要该功能pf即可实现所需的功能。尝试dplyr/tidyr组合
library(dplyr)
library(tidyr)
data %>%
group_by(v1) %>%
arrange(desc(v2))%>%
mutate(n=n()) %>%
filter(row_number() <= round(n * .2)) %>%
mutate(top_pct= ifelse(row_number()<=round(n* .1), 10, 20)) %>%
select(custID, top_pct) %>%
spread(v1, top_pct)
# custID A B
#1 1 10 10
#2 2 20 20
#3 6 NA 10
#4 7 NA 20
Run Code Online (Sandbox Code Playgroud)