fis*_*whj 21 python image neural-network
我想为神经网络绘制一幅动态图片,以观察体重变化和学习过程中神经元的激活.我怎么能在Python中模拟这个过程?
更确切地说,如果网络形状是:[1000,300,50],那么我希望绘制一个三层NN,它分别包含1000,300和50个神经元.此外,我希望图片可以反映每个时期每层神经元的饱和度.
我不知道该怎么做.有人可以对我有所了解吗?
Oli*_*ken 28
我根据米洛的答案改编了一些部分
from matplotlib import pyplot
from math import cos, sin, atan
class Neuron():
def __init__(self, x, y):
self.x = x
self.y = y
def draw(self, neuron_radius):
circle = pyplot.Circle((self.x, self.y), radius=neuron_radius, fill=False)
pyplot.gca().add_patch(circle)
class Layer():
def __init__(self, network, number_of_neurons, number_of_neurons_in_widest_layer):
self.vertical_distance_between_layers = 6
self.horizontal_distance_between_neurons = 2
self.neuron_radius = 0.5
self.number_of_neurons_in_widest_layer = number_of_neurons_in_widest_layer
self.previous_layer = self.__get_previous_layer(network)
self.y = self.__calculate_layer_y_position()
self.neurons = self.__intialise_neurons(number_of_neurons)
def __intialise_neurons(self, number_of_neurons):
neurons = []
x = self.__calculate_left_margin_so_layer_is_centered(number_of_neurons)
for iteration in xrange(number_of_neurons):
neuron = Neuron(x, self.y)
neurons.append(neuron)
x += self.horizontal_distance_between_neurons
return neurons
def __calculate_left_margin_so_layer_is_centered(self, number_of_neurons):
return self.horizontal_distance_between_neurons * (self.number_of_neurons_in_widest_layer - number_of_neurons) / 2
def __calculate_layer_y_position(self):
if self.previous_layer:
return self.previous_layer.y + self.vertical_distance_between_layers
else:
return 0
def __get_previous_layer(self, network):
if len(network.layers) > 0:
return network.layers[-1]
else:
return None
def __line_between_two_neurons(self, neuron1, neuron2):
angle = atan((neuron2.x - neuron1.x) / float(neuron2.y - neuron1.y))
x_adjustment = self.neuron_radius * sin(angle)
y_adjustment = self.neuron_radius * cos(angle)
line = pyplot.Line2D((neuron1.x - x_adjustment, neuron2.x + x_adjustment), (neuron1.y - y_adjustment, neuron2.y + y_adjustment))
pyplot.gca().add_line(line)
def draw(self, layerType=0):
for neuron in self.neurons:
neuron.draw( self.neuron_radius )
if self.previous_layer:
for previous_layer_neuron in self.previous_layer.neurons:
self.__line_between_two_neurons(neuron, previous_layer_neuron)
# write Text
x_text = self.number_of_neurons_in_widest_layer * self.horizontal_distance_between_neurons
if layerType == 0:
pyplot.text(x_text, self.y, 'Input Layer', fontsize = 12)
elif layerType == -1:
pyplot.text(x_text, self.y, 'Output Layer', fontsize = 12)
else:
pyplot.text(x_text, self.y, 'Hidden Layer '+str(layerType), fontsize = 12)
class NeuralNetwork():
def __init__(self, number_of_neurons_in_widest_layer):
self.number_of_neurons_in_widest_layer = number_of_neurons_in_widest_layer
self.layers = []
self.layertype = 0
def add_layer(self, number_of_neurons ):
layer = Layer(self, number_of_neurons, self.number_of_neurons_in_widest_layer)
self.layers.append(layer)
def draw(self):
pyplot.figure()
for i in range( len(self.layers) ):
layer = self.layers[i]
if i == len(self.layers)-1:
i = -1
layer.draw( i )
pyplot.axis('scaled')
pyplot.axis('off')
pyplot.title( 'Neural Network architecture', fontsize=15 )
pyplot.show()
class DrawNN():
def __init__( self, neural_network ):
self.neural_network = neural_network
def draw( self ):
widest_layer = max( self.neural_network )
network = NeuralNetwork( widest_layer )
for l in self.neural_network:
network.add_layer(l)
network.draw()
Run Code Online (Sandbox Code Playgroud)
现在,图层也被标记,轴被删除,构建图更容易.它只是通过以下方式完成:
network = DrawNN( [2,8,8,1] )
network.draw()
Run Code Online (Sandbox Code Playgroud)
这里构造了具有以下结构的网:
Mil*_*ilo 13
Python库matplotlib提供了绘制圆和线的方法.它还允许动画.
我写了一些示例代码来说明如何做到这一点.我的代码生成一个神经网络的简单静态图,其中每个神经元连接到前一层中的每个神经元.需要进一步的工作来动画它.

from matplotlib import pyplot
from math import cos, sin, atan
class Neuron():
def __init__(self, x, y):
self.x = x
self.y = y
def draw(self):
circle = pyplot.Circle((self.x, self.y), radius=neuron_radius, fill=False)
pyplot.gca().add_patch(circle)
class Layer():
def __init__(self, network, number_of_neurons):
self.previous_layer = self.__get_previous_layer(network)
self.y = self.__calculate_layer_y_position()
self.neurons = self.__intialise_neurons(number_of_neurons)
def __intialise_neurons(self, number_of_neurons):
neurons = []
x = self.__calculate_left_margin_so_layer_is_centered(number_of_neurons)
for iteration in xrange(number_of_neurons):
neuron = Neuron(x, self.y)
neurons.append(neuron)
x += horizontal_distance_between_neurons
return neurons
def __calculate_left_margin_so_layer_is_centered(self, number_of_neurons):
return horizontal_distance_between_neurons * (number_of_neurons_in_widest_layer - number_of_neurons) / 2
def __calculate_layer_y_position(self):
if self.previous_layer:
return self.previous_layer.y + vertical_distance_between_layers
else:
return 0
def __get_previous_layer(self, network):
if len(network.layers) > 0:
return network.layers[-1]
else:
return None
def __line_between_two_neurons(self, neuron1, neuron2):
angle = atan((neuron2.x - neuron1.x) / float(neuron2.y - neuron1.y))
x_adjustment = neuron_radius * sin(angle)
y_adjustment = neuron_radius * cos(angle)
line = pyplot.Line2D((neuron1.x - x_adjustment, neuron2.x + x_adjustment), (neuron1.y - y_adjustment, neuron2.y + y_adjustment))
pyplot.gca().add_line(line)
def draw(self):
for neuron in self.neurons:
neuron.draw()
if self.previous_layer:
for previous_layer_neuron in self.previous_layer.neurons:
self.__line_between_two_neurons(neuron, previous_layer_neuron)
class NeuralNetwork():
def __init__(self):
self.layers = []
def add_layer(self, number_of_neurons):
layer = Layer(self, number_of_neurons)
self.layers.append(layer)
def draw(self):
for layer in self.layers:
layer.draw()
pyplot.axis('scaled')
pyplot.show()
if __name__ == "__main__":
vertical_distance_between_layers = 6
horizontal_distance_between_neurons = 2
neuron_radius = 0.5
number_of_neurons_in_widest_layer = 4
network = NeuralNetwork()
network.add_layer(3)
network.add_layer(4)
network.add_layer(1)
network.draw()
Run Code Online (Sandbox Code Playgroud)
为了实现Mykhaylo的建议,我稍微修改了Milo的代码,以便允许提供weghts作为参数,这将影响每一行的宽度.这个参数是可选的,因为没有为最后一层提供权重的意义.所有这些都能够在神经网络上可视化我对此练习的解决方案.我已经给出了二进制权重(0或1),因此根本不绘制具有零权重的行(以使图像更清晰).
from matplotlib import pyplot
from math import cos, sin, atan
import numpy as np
class Neuron():
def __init__(self, x, y):
self.x = x
self.y = y
def draw(self):
circle = pyplot.Circle((self.x, self.y), radius=neuron_radius, fill=False)
pyplot.gca().add_patch(circle)
class Layer():
def __init__(self, network, number_of_neurons, weights):
self.previous_layer = self.__get_previous_layer(network)
self.y = self.__calculate_layer_y_position()
self.neurons = self.__intialise_neurons(number_of_neurons)
self.weights = weights
def __intialise_neurons(self, number_of_neurons):
neurons = []
x = self.__calculate_left_margin_so_layer_is_centered(number_of_neurons)
for iteration in range(number_of_neurons):
neuron = Neuron(x, self.y)
neurons.append(neuron)
x += horizontal_distance_between_neurons
return neurons
def __calculate_left_margin_so_layer_is_centered(self, number_of_neurons):
return horizontal_distance_between_neurons * (number_of_neurons_in_widest_layer - number_of_neurons) / 2
def __calculate_layer_y_position(self):
if self.previous_layer:
return self.previous_layer.y + vertical_distance_between_layers
else:
return 0
def __get_previous_layer(self, network):
if len(network.layers) > 0:
return network.layers[-1]
else:
return None
def __line_between_two_neurons(self, neuron1, neuron2, linewidth):
angle = atan((neuron2.x - neuron1.x) / float(neuron2.y - neuron1.y))
x_adjustment = neuron_radius * sin(angle)
y_adjustment = neuron_radius * cos(angle)
line_x_data = (neuron1.x - x_adjustment, neuron2.x + x_adjustment)
line_y_data = (neuron1.y - y_adjustment, neuron2.y + y_adjustment)
line = pyplot.Line2D(line_x_data, line_y_data, linewidth=linewidth)
pyplot.gca().add_line(line)
def draw(self):
for this_layer_neuron_index in range(len(self.neurons)):
neuron = self.neurons[this_layer_neuron_index]
neuron.draw()
if self.previous_layer:
for previous_layer_neuron_index in range(len(self.previous_layer.neurons)):
previous_layer_neuron = self.previous_layer.neurons[previous_layer_neuron_index]
weight = self.previous_layer.weights[this_layer_neuron_index, previous_layer_neuron_index]
self.__line_between_two_neurons(neuron, previous_layer_neuron, weight)
class NeuralNetwork():
def __init__(self):
self.layers = []
def add_layer(self, number_of_neurons, weights=None):
layer = Layer(self, number_of_neurons, weights)
self.layers.append(layer)
def draw(self):
for layer in self.layers:
layer.draw()
pyplot.axis('scaled')
pyplot.show()
if __name__ == "__main__":
vertical_distance_between_layers = 6
horizontal_distance_between_neurons = 2
neuron_radius = 0.5
number_of_neurons_in_widest_layer = 4
network = NeuralNetwork()
# weights to convert from 10 outputs to 4 (decimal digits to their binary representation)
weights1 = np.array([\
[0,0,0,0,0,0,0,0,1,1],\
[0,0,0,0,1,1,1,1,0,0],\
[0,0,1,1,0,0,1,1,0,0],\
[0,1,0,1,0,1,0,1,0,1]])
network.add_layer(10, weights1)
network.add_layer(4)
network.draw()
Run Code Online (Sandbox Code Playgroud)
这是一个基于matplotlib的库,名为viznet(pip install viznet).首先,您可以阅读此笔记本.这是一个例子

Viznet定义了一组画笔规则.
node1 >> (0, 1.2) # put a node centered at axis (0, 1.2)
node2 >> (2, 0) # put a node centered at axis (2, 0)
edge >> (node1, node2) # connect two nodes
Run Code Online (Sandbox Code Playgroud)
这里,node1和node2是两个节点画笔,如
node1 = NodeBrush('nn.input', ax=d.ax, size='normal')
第一个参数定义节点的主题.对于神经网络节点(主题以'nn.'开头),其样式来自神经网络动物园页面.

对于边缘,我们可以定义它的画笔edge = EdgeBrush('->', ax=d.ax, lw=2)
,第一个参数是主题,' - '表示直线,'.' 对于虚线,'='表示双线,'>','<'是左箭头和右箭头.' - ','.'的比例.主题代码中的'='在一行中决定它们的长度.例如,' - >'和' - > - '表示分别带有箭头的箭头和中心的箭头.以下是几个例子

只有节点和边缘是不够的,连接规则起着根本性的作用.除基本连接规则外,您可以在节点上创建引脚.我会在这里停下来留下文件.这些灵活的特性使其能够绘制张量网络和量子电路.
这个项目刚刚接受了v0.1的发布,我会不断改进它.您可以访问其Github 仓库以获取最新版本,以及拉取请求或发布问题的好处!
该解决方案涉及Python 和LaTeX。对于你的情况来说可能有点过分了,但结果确实很美观并且适合更复杂的现代架构(深度学习等),所以我想这里值得一提。您首先需要在 Python 中定义您的网络,例如:
import sys
sys.path.append('../')
from pycore.tikzeng import *
# defined your arch
arch = [
to_head( '..' ),
to_cor(),
to_begin(),
to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2 ),
to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)"),
to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2 ),
to_connection( "pool1", "conv2"),
to_Pool("pool2", offset="(0,0,0)", to="(conv2-east)", height=28, depth=28, width=1),
to_SoftMax("soft1", 10 ,"(3,0,0)", "(pool1-east)", caption="SOFT" ),
to_connection("pool2", "soft1"),
to_end()
]
def main():
namefile = str(sys.argv[0]).split('.')[0]
to_generate(arch, namefile + '.tex' )
if __name__ == '__main__':
main()
Run Code Online (Sandbox Code Playgroud)
之后,你生成一个 TikZ 图像......
bash ../tikzmake.sh my_arch
Run Code Online (Sandbox Code Playgroud)
...这将为您生成一个包含您的网络的 PDF:
存储库中提供了示例,位于其中之一的下方。我已经在 OS X 上测试过它,应该也可以在 Linux 上运行。不知道 Windows 怎么样。当然,您需要安装 LaTeX 发行版。
| 归档时间: |
|
| 查看次数: |
19699 次 |
| 最近记录: |