在Python中有效地检查大量对象的欧几里德距离

kfs*_*one 7 python numpy vectorization computational-geometry

在路由规划算法中,我试图根据到另一个节点的距离对节点列表执行过滤.我实际上是从粗略的场景图中提取列表.我使用术语"单元格"来指代简单场景图中的一个卷,我们从中获取了彼此接近的节点列表.

现在,我正在实现这个:

# SSCCE version of the core function
def nodes_in_range(src, cell, maxDist):
    srcX, srcY, srcZ = src.x, src.y, src.z
    maxDistSq = maxDist ** 2
    for node in cell:
        distSq = (node.x - srcX) ** 2
        if distSq > maxDistSq: continue
        distSq += (node.y - srcY) ** 2
        if distSq > maxDistSq: continue
        distSq += (node.z - srcZ) ** 2
        if distSq <= maxDistSq:
            yield node, distSq ** 0.5  # fast sqrt

from collections import namedtuple
class Node(namedtuple('Node', ('ID', 'x', 'y', 'z'))):
    # actual class has assorted other properties
    pass

# 1, 3 and 9 are <= 4.2 from Node(1)
cell = [
    Node(1, 0, 0, 0),
    Node(2, -2, -3, 4),
    Node(3, .1, .2, .3),
    Node(4, 2.3, -3.3, -4.5),
    Node(5, -2.5, 4.5, 5),
    Node(6, 4, 3., 2.),
    Node(7, -2.46, 2.46, -2.47),
    Node(8, 2.45, -2.46, -2.47),
    Node(9, .5, .5, .1),
    Node(10, 5, 6, 7),
    # In practice, cells have upto 600 entries
]

if __name__ == "__main__":
    for node, dist in nodes_in_range(cell[0], cell, 4.2):
        print("{:3n} {:5.2f}".format(node.ID, dist))
Run Code Online (Sandbox Code Playgroud)

这个例程被调用很多(在一些查询中是10 ^ 7 +次),因此每个perf都很重要,并且避免使用条件的成员查找实际上有帮助.

我正在尝试做的是切换到numpy并组织单元格以便我可以进行矢量化.我想要实现的是:

import numpy
import numpy.linalg
contarry = numpy.ascontiguousarray
float32 = numpy.float32

# The "np_cell" has two arrays: one is the list of nodes and the
# second is a vectorizable array of their positions.
# np_cell[N][1] == numpy array position of np_cell[N][0]

def make_np_cell(cell):
    return (
        cell,
        contarry([contarry((node.x, node.y, node.z), float32) for node in cell]),
     )

# This version fails because norm returns a single value.
def np_nodes_in_range1(srcPos, np_cell, maxDist):
    distances = numpy.linalg.norm(np_cell[1] - srcPos)

    for (node, dist) in zip(np_cell[0], distances):
        if dist <= maxDist:
            yield node, dist

# This version fails because 
def np_nodes_in_range2(srcPos, np_cell, maxDist):
    # this will fail because the distances are wrong
    distances = numpy.linalg.norm(np_cell[1] - srcPos, ord=1, axis=1)
    for (node, dist) in zip(np_cell[0], distances):
        if dist <= maxDist:
            yield node, dist

# This version doesn't vectorize and so performs poorly
def np_nodes_in_range3(srcPos, np_cell, maxDist):
    norm = numpy.linalg.norm
    for (node, pos) in zip(np_cell[0], np_cell[1]):
        dist = norm(srcPos - pos)
        if dist <= maxDist:
            yield node, dist

if __name__ == "__main__":
    np_cell = make_np_cell(cell)
    srcPos = np_cell[1][0]  # Position column [1], first node [0]
    print("v1 - fails because it gets a single distance")
    try:
        for node, dist in np_nodes_in_range1(srcPos, np_cell, float32(4.2)):
            print("{:3n} {:5.2f}".format(node.ID, dist))
    except TypeError:
        print("distances was a single value")

    print("v2 - gets the wrong distance values")
    for node, dist in np_nodes_in_range2(srcPos, np_cell, float32(4.2)):
        print("{:3n} {:5.2f}".format(node.ID, dist))

    print("v3 - slower")
    for node, dist in np_nodes_in_range3(srcPos, np_cell, float32(4.2)):
        print("{:3n} {:5.2f}".format(node.ID, dist))
Run Code Online (Sandbox Code Playgroud)

组合整体在这里 - 我包括一个尝试使用enumerate而不是的v4,zip并发现它大约12us慢.

样本输出:

  1  0.00
  3  0.37
  9  0.71
v1 - fails because it gets a single distance
distances was a single value
v2 - gets the wrong distance values
  1  0.00
  3  0.60
  9  1.10
v3 - slower
  1  0.00
  3  0.37
  9  0.71
v4 - v2 using enumerate
  1  0.00
  3  0.60
  9  1.10
Run Code Online (Sandbox Code Playgroud)

至于性能,我们可以测试一下timeit.我将通过简单的乘法增强单元中的节点数量:

In [2]: from sscce import *
In [3]: cell = cell * 32   # increase to 320 nodes
In [4]: len(cell)
Out[4]: 320
In [5]: %timeit -n 1000 -r 7 sum(1 for _ in nodes_in_range(cell[0], cell, 4.2))
1000 loops, best of 7: 742 µs per loop
In [6]: np_cell = make_np_cell(cell)
In [7]: srcPos = np_cell[1][0]
In [8]: %timeit -n 1000 -r 7 sum(1 for _ in np_nodes_in_range2(srcPos, np_cell, numpy.float32(4.2)))
1000 loops, best of 7: 136 µs per loop
In [9]: %timeit -n 1000 -r 7 sum(1 for _ in np_nodes_in_range3(srcPos, np_cell, numpy.float32(4.2)))
1000 loops, best of 7: 3.64 ms per loop
Run Code Online (Sandbox Code Playgroud)

强调:

nodes_in_range
    1000 loops, best of 7: 742 µs per loop

np_nodes_in_range2
    1000 loops, best of 7: 136 µs per loop

np_nodes_in_range3
    1000 loops, best of 7: 3.64 ms per loop # OUCH
Run Code Online (Sandbox Code Playgroud)

问题:

  1. 我对矢量化距离计算有什么问题?

    distances = numpy.linalg.norm(np_cell[1] - srcPos)
    
    Run Code Online (Sandbox Code Playgroud)

    VS

    distances = numpy.linalg.norm(np_cell[1] - srcPos, ord=1, axis=1)
    
    Run Code Online (Sandbox Code Playgroud)
  2. 这是最好的方法吗?

  3. 细胞数量在几个节点和数百个之间变化.我目前正在迭代单元格,但似乎我想整理一整套候选人,(nodes[], positions[])尽管为此建立列表的潜在额外成本(我总是可以使用批量累加器,以便我总是尝试填充累加器,比如,排水前至少有1024个位置).但我认为这种想法是由我使用连续数组形成的.我应该看看像这样的东西:

    nodes_in_range(src, chain(cell.nodes for cell in scene if cell_in_range(boundingBox)))
    
    Run Code Online (Sandbox Code Playgroud)

并不担心试图压扁整个事情?

ali*_*i_m 6

  1. 矢量化距离计算有什么问题?

    distances = numpy.linalg.norm(np_cell[1] - srcPos)
    
    Run Code Online (Sandbox Code Playgroud)

    对比

    distances = numpy.linalg.norm(np_cell[1] - srcPos, ord=1, axis=1)
    
    Run Code Online (Sandbox Code Playgroud)

首先,如果axis=None,np.linalg.norm将计算向量范数(如果输入是一维的)或矩阵范数(如果输入是多维的)。这两个都是标量。

其次,正如你在标题中提到的,ord=1意味着 L1 范数(即曼哈顿距离),而不是欧几里得距离。


  1. 这是最好的方法吗?

一个kd树很可能是快。您可以使用scipy.spatial.cKDTree球搜索来查找距查询点某个阈值距离内的节点:

import numpy as np
from scipy.spatial import cKDTree

# it will be much easier (and faster) to deal with numpy arrays here (you could
# always look up the corresponding node objects by index if you wanted to)
X = np.array([(n.x, n.y, n.z) for n in cell])

# construct a k-D tree
tree = cKDTree(X)

# query it with the first point, find the indices of all points within a maximum
# distance of 4.2 of the query point
query_point = X[0]
idx = tree.query_ball_point(query_point, r=4.2, p=2)

# these indices are one out from yours, since they start at 0 rather than 1
print(idx)
# [0, 2, 8]

# query_ball_point doesn't return the distances, but we can easily compute these
# using broadcasting
neighbor_points = X[idx]

d = np.sqrt(((query_point[None, :] - neighbor_points) ** 2).sum(1))
print(d)
# [ 0.          0.37416574  0.71414284]
Run Code Online (Sandbox Code Playgroud)

基准测试:

查询 acKDTree的速度非常快,即使对于非常多的点:

X = np.random.randn(10000000, 3)
tree = cKDTree(X)

%timeit tree.query_ball_point(np.random.randn(3), r=4.2)
# 1 loops, best of 3: 229 ms per loop
Run Code Online (Sandbox Code Playgroud)

正如您在评论中提到的,上面的示例是比您的数据更严格的性能测试。由于选择的距离容差,以及数据是高斯分布的(因此聚集在 0 附近),它与 10m 点的大约 99% 匹配。

这是对具有更严格距离截止的均匀数据的测试,该数据匹配大约 30% 的点,如您的示例所示:

%timeit tree.query_ball_point((0., 0., 0.), r=1.2)
# 10 loops, best of 3: 86 ms per loop
Run Code Online (Sandbox Code Playgroud)

显然,这比您使用的点数要多得多。对于您的示例数据:

tree = cKDTree(np_cell[1])
%timeit tree.query_ball_point(np_cell[1][0], r=4.2)
# The slowest run took 4.26 times longer than the fastest. This could mean that an intermediate result is being cached 
# 100000 loops, best of 3: 16.9 µs per loop
Run Code Online (Sandbox Code Playgroud)

np_nodes_in_range2在我的机器上轻松击败了您的功能:

%timeit sum(1 for _ in np_nodes_in_range2(srcPos, np_cell, numpy.float32(4.2)))
# The slowest run took 7.77 times longer than the fastest. This could mean that an intermediate result is being cached 
# 10000 loops, best of 3: 84.4 µs per loop
Run Code Online (Sandbox Code Playgroud)

其他需要考虑的事项:

如果需要同时查询多个点,构造第二棵树并使用query_ball_tree代替query_ball_point

X = np.random.randn(100, 3)
Y = np.random.randn(10, 3)
tree1 = cKDTree(X)
tree2 = cKDTree(Y)

# indices contains a list-of-lists, where the ith sublist contains the indices
# of the neighbours of Y[i] in X
indices = tree2.query_ball_tree(tree1, r=4.2)
Run Code Online (Sandbox Code Playgroud)

如果您不关心指数,而只想了解球中的点数,则使用可能会更快count_neighbours

n_neighbors = tree2.count_neighbors(tree1, r=4.2)
Run Code Online (Sandbox Code Playgroud)