我正在努力编写一个脚本,允许更灵活的方法来比较使用lme4或nlme包的不同线性混合效果模型.因为我不想为我添加或删除的每个模型调整脚本,所以我正在寻找一种动态方法.这样做我只需要调整一个包含模型公式的字符串的变量.
这个工作正常,除非anova()进来.anova()不接受包含适当类的元素列表:
###### Here is my problem
# comparing models by means of ANOVA
anova(lme.lst) #### --> does not work
anova(lme.lst[[1]], lme.lst[[2]], lme.lst[[3]]) #### would work but kills the dynamic approach
######
Run Code Online (Sandbox Code Playgroud)
我没有想出一个简洁的方法来分解列表并将多个参数传递给anova()函数.我试过unlist()没有任何成功.
这是一个最小的例子(改编自lme4手册,第8页):
require(lme4)
require(AICcmodavg)
# Variable containing of strings in order to describe the fixed effect terms
# (wihout response/dependen variable) ### should be orderd from
callModel <- c("angle ~ recipe + temp + (1|recipe:replicate)", # model1 ### small
"angle ~ recipe + temperature + (1|recipe:replicate)", # model2 ### too
"angle ~ recipe * temperature + (1|recipe:replicate)") # model3 ### BIG
# convert string array 'callFeVar' into a list of formulas
callModel <- sapply(callModel, as.formula)
# create an empty list for safing the results of fitted model
lme.lst <- list()
# do model fitting in a loop and change list names
for (i in 1 : length(callModel)) {
lmeTmp <- lmer(callModel[[i]], cake, REML= FALSE)
lme.lst[i] <- list(lmeTmp)
names(lme.lst)[i] <- deparse(callModel[[i]])
}
# remove temporary variable
rm(lmeTmp)
# summary of models
lapply(lme.lst, summary)
###### Here is my problem
# comparing models by means of ANOVA
anova(lme.lst) #### --> does not work
anova(lme.lst[[1]], lme.lst[[2]], lme.lst[[3]]) #### would work but kills the dynamic approach
######
# comparing models by means of AICc
aictab(lme.lst) #### accepts list
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
744 次 |
| 最近记录: |