无论位置如何,都能找到独特的组合

Tho*_*ite 8 combinations r duplicates

我确信这很简单,但我有一个数据框

      df <- data.frame(a = c(1, 2, 3),
                       b = c(2, 3, 1),
                       c = c(3, 1, 4))
Run Code Online (Sandbox Code Playgroud)

我想要一个新的数据框,其中包含行中值的唯一组合,无论它们位于哪一列.所以在上面的例子中我想要

    a b c
    1 2 3
    3 1 4
Run Code Online (Sandbox Code Playgroud)

我试过了

    unique(df[c('a', 'b', 'c')])
Run Code Online (Sandbox Code Playgroud)

但它看到(1,2,3)与(2,3,1)中的唯一,我不想要.

Dav*_*urg 6

也许是这样的

indx <- !duplicated(t(apply(df, 1, sort))) # finds non - duplicates in sorted rows
df[indx, ] # selects only the non - duplicates according to that index
#   a b c
# 1 1 2 3
# 3 3 1 4
Run Code Online (Sandbox Code Playgroud)


ins*_*ven 6

如果您的data.frame非常大,速度可能适合您.通过以下想法,您可以更快地找到重复的集合.

让我们想象一下,在行中为每个可能的值分配一个素数,并为每一行计算产品.例如,df我们可以接受primenums = c(2,3,5,7)和统计产品c(30,30,70).然后,此products-vector中的重复项对应于data.frame中的重复集.由于乘法计算速度比任何类型的排序快得多,因此可以提高效率.代码如下.

require("numbers")
primenums <- Primes(100)[1:4]
dfmult <- apply(as.matrix(df), 1, function(z) prod(primenums[z]) )
my_indx <- !duplicated(dfmult)
df[my_indx,]
Run Code Online (Sandbox Code Playgroud)

这里我们primenums借助Primespackage中的函数初始化vector numbers,但是你可以用其他方式手动完成.

看看这个例子.这里我展示了效率的比较.

require("numbers")

# generate all unique combinations 10 out of 20
allcomb <- t(combn(20,10))
# make sample of 1 million rows
set.seed(789)
df <- allcomb[sample(nrow(allcomb), 1e6, T),]
# lets sort matrix to show we have duplicates
df <- df[do.call(order, lapply(1:ncol(df), function(i) df[, i])), ]
head(df, 10)
#       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#  [1,]    1    2    3    4    5    6    7    8    9    10
#  [2,]    1    2    3    4    5    6    7    8    9    10
#  [3,]    1    2    3    4    5    6    7    8    9    10
#  [4,]    1    2    3    4    5    6    7    8    9    10
#  [5,]    1    2    3    4    5    6    7    8    9    11
#  [6,]    1    2    3    4    5    6    7    8    9    11
#  [7,]    1    2    3    4    5    6    7    8    9    11
#  [8,]    1    2    3    4    5    6    7    8    9    11
#  [9,]    1    2    3    4    5    6    7    8    9    11
# [10,]    1    2    3    4    5    6    7    8    9    11

# to be fair need to permutate numbers in rows before searching for identical sets
df <- t(apply(df, 1, function(z) z[sample(10,10)] ))
df <- as.data.frame(df)
names(df) <- letters[1:10]
# how does it look like now?
head(df, 10)
#     a b c  d  e  f  g h  i j
# 1   2 3 7  9 10  1  4 8  5 6
# 2   4 2 6  3  8 10  9 1  5 7
# 3   4 2 6  8  5  1 10 7  3 9
# 4   6 8 5  4  2  1 10 9  7 3
# 5  11 2 7  6  8  1  9 4  5 3
# 6   9 6 3 11  4  2  8 7  5 1
# 7   5 2 3 11  1  8  6 9  7 4
# 8   3 9 7  1  2  5  4 8 11 6
# 9   6 2 8  3  4  1 11 5  9 7
# 10  4 6 3  9  7  2  1 5 11 8

# now lets shuffle rows to make df more plausible
df <- df[sample(nrow(df), nrow(df)),]
Run Code Online (Sandbox Code Playgroud)

现在,当data.frame准备就绪时,我们可以测试不同的算法.

system.time(indx <- !duplicated(t(apply(df, 1, sort))) )
#   user  system elapsed 
# 119.75    0.06  120.03
# doesn't impress, frankly speaking

library(sets)
system.time(indx <- !duplicated(apply(df, 1, as.set)) )
#  user  system elapsed 
# 91.60    0.00   91.89
# better, but we want faster! =)

# now lets check out the method with prime numbers
primenums <- Primes(100)[1:20]
# [1]  2  3  5  7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
system.time({
  dfmult <- apply(as.matrix(df), 1, function(z) prod(primenums[z]) )
  my_indx <- !duplicated(dfmult) })
# user  system elapsed 
# 6.44    0.16    6.61
# not bad, isn't it? but lets compare results
identical(indx, my_indx)
# [1] TRUE

# So, if there is no difference, why wait more? ;)
Run Code Online (Sandbox Code Playgroud)

这里有一个重要的假设 - 我们使用as.matrix(df),但如果我们不仅有数字变量data.frame怎么办?一个更加统一的解决方案如下:

system.time({
  dfmult <- apply(
    apply(df, 2, function(colmn) as.integer(factor(colmn, 
                                                   levels = unique(c(as.matrix(df)))))),
    1, function(z) prod(primenums[z]) )
  my_indx <- !duplicated(dfmult) })
#  user  system elapsed 
# 27.48    0.34   27.84
# is distinctly slower but still much faster then previous methods
Run Code Online (Sandbox Code Playgroud)

如果我们有很多列或非常不同的变量呢?在这种情况下,而不是prod()我们可以使用sum(log())(对于大数字可能更快地计算).看看这个.

pr <- Primes(5e7)
length(pr)   
# [1] 3001134
system.time(N <- sum(log(pr)))
# user  system elapsed 
# 0.12    0.00    0.13
N
# [1] 49993718
Run Code Online (Sandbox Code Playgroud)

很难想象df有3百万列,但这里没问题.这种方式允许我们携带df任何令人难以置信的巨大尺寸,我们的RAM可容纳多列.