Jan*_*uer 7 c++ debugging llvm clang
我试图找到LLVM中的指令,按行和列号(由第三方工具报告)来检测它们.为此,我clang -g -O0 -emit-llvm使用以下代码编译源文件并在元数据中查找信息:
const DebugLoc &location = instruction->getDebugLoc();
// location.getLine()
// location.getCol()
Run Code Online (Sandbox Code Playgroud)
不幸的是,这些信息绝对不准确.考虑以下Fibonacci函数的实现:
unsigned fib(unsigned n) {
if (n < 2)
return n;
unsigned f = fib(n - 1) + fib(n - 2);
return f;
}
Run Code Online (Sandbox Code Playgroud)
我想unsigned f = ...在结果LLVM IR中找到与赋值相对应的单个LLVM指令.我对右手边的所有计算都不感兴趣.生成的LLVM块包括相关的调试元数据:
[...]
if.end: ; preds = %entry
call void @llvm.dbg.declare(metadata !{i32* %f}, metadata !17), !dbg !18
%2 = load i32* %n.addr, align 4, !dbg !19
%sub = sub i32 %2, 1, !dbg !19
%call = call i32 @fib(i32 %sub), !dbg !19
%3 = load i32* %n.addr, align 4, !dbg !20
%sub1 = sub i32 %3, 2, !dbg !20
%call2 = call i32 @fib(i32 %sub1), !dbg !20
%add = add i32 %call, %call2, !dbg !20
store i32 %add, i32* %f, align 4, !dbg !20
%4 = load i32* %f, align 4, !dbg !21
store i32 %4, i32* %retval, !dbg !21
br label %return, !dbg !21
[...]
!17 = metadata !{i32 786688, metadata !4, metadata !"f", metadata !5, i32 5, metadata !8, i32 0, i32 0} ; [ DW_TAG_auto_variable ] [f] [line 5]
!18 = metadata !{i32 5, i32 11, metadata !4, null}
!19 = metadata !{i32 5, i32 15, metadata !4, null}
!20 = metadata !{i32 5, i32 28, metadata !4, null}
!21 = metadata !{i32 6, i32 2, metadata !4, null}
!22 = metadata !{i32 7, i32 1, metadata !4, null}
Run Code Online (Sandbox Code Playgroud)
正如你所看到的,在元数据!dbg !20中的store指令点,5号线28列,这是调用fib(n - 2).更糟糕的是,添加操作和减法n - 2都指向由...标识的函数调用!dbg !20.
有趣的是,所发出的Clang AST clang -Xclang -ast-dump -fsyntax-only具有所有这些信息.因此,我怀疑它在代码生成阶段会以某种方式丢失.似乎在代码生成期间,Clang到达一些内部序列点并将所有后续指令关联到该位置,直到发生下一个序列点(例如函数调用).为了完整性,这里是AST中的声明语句:
|-DeclStmt 0x7ffec3869f48 <line:5:2, col:38>
| `-VarDecl 0x7ffec382d680 <col:2, col:37> col:11 used f 'unsigned int' cinit
| `-BinaryOperator 0x7ffec3869f20 <col:15, col:37> 'unsigned int' '+'
| |-CallExpr 0x7ffec382d7e0 <col:15, col:24> 'unsigned int'
| | |-ImplicitCastExpr 0x7ffec382d7c8 <col:15> 'unsigned int (*)(unsigned int)' <FunctionToPointerDecay>
| | | `-DeclRefExpr 0x7ffec382d6d8 <col:15> 'unsigned int (unsigned int)' Function 0x7ffec382d490 'fib' 'unsigned int (unsigned int)'
| | `-BinaryOperator 0x7ffec382d778 <col:19, col:23> 'unsigned int' '-'
| | |-ImplicitCastExpr 0x7ffec382d748 <col:19> 'unsigned int' <LValueToRValue>
| | | `-DeclRefExpr 0x7ffec382d700 <col:19> 'unsigned int' lvalue ParmVar 0x7ffec382d3d0 'n' 'unsigned int'
| | `-ImplicitCastExpr 0x7ffec382d760 <col:23> 'unsigned int' <IntegralCast>
| | `-IntegerLiteral 0x7ffec382d728 <col:23> 'int' 1
| `-CallExpr 0x7ffec3869ef0 <col:28, col:37> 'unsigned int'
| |-ImplicitCastExpr 0x7ffec3869ed8 <col:28> 'unsigned int (*)(unsigned int)' <FunctionToPointerDecay>
| | `-DeclRefExpr 0x7ffec3869e10 <col:28> 'unsigned int (unsigned int)' Function 0x7ffec382d490 'fib' 'unsigned int (unsigned int)'
| `-BinaryOperator 0x7ffec3869eb0 <col:32, col:36> 'unsigned int' '-'
| |-ImplicitCastExpr 0x7ffec3869e80 <col:32> 'unsigned int' <LValueToRValue>
| | `-DeclRefExpr 0x7ffec3869e38 <col:32> 'unsigned int' lvalue ParmVar 0x7ffec382d3d0 'n' 'unsigned int'
| `-ImplicitCastExpr 0x7ffec3869e98 <col:36> 'unsigned int' <IntegralCast>
| `-IntegerLiteral 0x7ffec3869e60 <col:36> 'int' 2
Run Code Online (Sandbox Code Playgroud)
是可以提高调试元数据的准确性,还是以不同的方式解析相应的指令?理想情况下,我想保持Clang不受影响,即不修改并重新编译它.
事实证明,随着LLVM版本 3.6.0中 MDLocation的引入,这已得到修复。在撰写本文时,Xcode 命令行工具附带的当前 clang 编译器仍会生成以前的“错误”位置信息,即使它的版本字符串为. 下载预先构建的二进制文件后,生成的 LLVM IR 现在如下所示:Apple LLVM version 6.1.0 (clang-602.0.49) (based on LLVM 3.6.0svn)
[...]
; <label>:7 ; preds = %0
call void @llvm.dbg.declare(metadata i32* %f, metadata !21, metadata !14), !dbg !22
%8 = load i32* %2, align 4, !dbg !23
%9 = sub i32 %8, 1, !dbg !23
%10 = call i32 @fib(i32 %9), !dbg !24
%11 = load i32* %2, align 4, !dbg !25
%12 = sub i32 %11, 2, !dbg !25
%13 = call i32 @fib(i32 %12), !dbg !26
%14 = add i32 %10, %13, !dbg !24
store i32 %14, i32* %f, align 4, !dbg !22
%15 = load i32* %f, align 4, !dbg !27
store i32 %15, i32* %1, !dbg !28
br label %16, !dbg !28
[...]
!22 = !MDLocation(line: 5, column: 14, scope: !4)
!23 = !MDLocation(line: 5, column: 22, scope: !4)
!24 = !MDLocation(line: 5, column: 18, scope: !4)
!25 = !MDLocation(line: 5, column: 35, scope: !4)
!26 = !MDLocation(line: 5, column: 31, scope: !4)
!27 = !MDLocation(line: 6, column: 12, scope: !4)
!28 = !MDLocation(line: 6, column: 5, scope: !4)
Run Code Online (Sandbox Code Playgroud)
位置元数据始终指向表达式的开头。对于分配,例如,这是左手侧说明符f在第5行14栏。正如在 中看到的那样!dbg !24,不幸的是,这可能仍然是模棱两可的。
已经有一个多变化:访问getLine()和getColumn()如果没有调试的元数据附加到指令将失败。本DebugLoc类提供了一个方便的方法来检查:
const DebugLoc &location = instruction->getDebugLoc();
if (location) {
// location.getLine()
// location.getCol()
} else {
// No location metadata available
}
Run Code Online (Sandbox Code Playgroud)