sfo*_*ney 20 python ram numpy pandas
我有大约30 GB的数据(在大约900个数据帧的列表中),我试图连接在一起.我正在使用的机器是一个中等功能的Linux Box,大约256 GB的内存.但是,当我尝试连接我的文件时,我很快用完了可用的ram.我已经尝试了各种解决方法来解决这个问题(在较小批量中与for循环连接等)但我仍然无法将这些连接起来.两个问题浮现在脑海中:
还有其他人处理过此问题并找到了有效的解决方法吗?因为我需要的"列合并"(由于缺乏一个更好的词)的功能,我不能使用直追加join='outer'
的说法pd.concat()
.
为什么Pandas连接(我知道它只是调用numpy.concatenate
)因使用内存而效率低下?
我还应该注意到,我不认为问题是列的爆炸,因为将100个数据帧连接在一起会产生大约3000列,而基础数据帧大约为1000.
我正在使用的数据是我的900个数据帧中的每一个大约1000列宽和大约50,000行深度的财务数据.从左到右的数据类型是:
string
np.float
int
......等等重复.我串连对列名的与外连接,这意味着在任何列df2
不在df1
不会被丢弃,而是分流到一边.
#example code
data=pd.concat(datalist4, join="outer", axis=0, ignore_index=True)
#two example dataframes (about 90% of the column names should be in common
#between the two dataframes, the unnamed columns, etc are not a significant
#number of the columns)
print datalist4[0].head()
800_1 800_2 800_3 800_4 900_1 900_2 0 2014-08-06 09:00:00 BEST_BID 1117.1 103 2014-08-06 09:00:00 BEST_BID
1 2014-08-06 09:00:00 BEST_ASK 1120.0 103 2014-08-06 09:00:00 BEST_ASK
2 2014-08-06 09:00:00 BEST_BID 1106.9 11 2014-08-06 09:00:00 BEST_BID
3 2014-08-06 09:00:00 BEST_ASK 1125.8 62 2014-08-06 09:00:00 BEST_ASK
4 2014-08-06 09:00:00 BEST_BID 1117.1 103 2014-08-06 09:00:00 BEST_BID
900_3 900_4 1000_1 1000_2 ... 2400_4 0 1017.2 103 2014-08-06 09:00:00 BEST_BID ... NaN
1 1020.1 103 2014-08-06 09:00:00 BEST_ASK ... NaN
2 1004.3 11 2014-08-06 09:00:00 BEST_BID ... NaN
3 1022.9 11 2014-08-06 09:00:00 BEST_ASK ... NaN
4 1006.7 10 2014-08-06 09:00:00 BEST_BID ... NaN
_1 _2 _3 _4 _1.1 _2.1 _3.1 _4.1 0 #N/A Invalid Security NaN NaN NaN #N/A Invalid Security NaN NaN NaN
1 NaN NaN NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN NaN NaN
dater
0 2014.8.6
1 2014.8.6
2 2014.8.6
3 2014.8.6
4 2014.8.6
[5 rows x 777 columns]
print datalist4[1].head()
150_1 150_2 150_3 150_4 200_1 200_2 0 2013-12-04 09:00:00 BEST_BID 1639.6 30 2013-12-04 09:00:00 BEST_ASK
1 2013-12-04 09:00:00 BEST_ASK 1641.8 133 2013-12-04 09:00:08 BEST_BID
2 2013-12-04 09:00:01 BEST_BID 1639.5 30 2013-12-04 09:00:08 BEST_ASK
3 2013-12-04 09:00:05 BEST_BID 1639.4 30 2013-12-04 09:00:08 BEST_ASK
4 2013-12-04 09:00:08 BEST_BID 1639.3 133 2013-12-04 09:00:08 BEST_BID
200_3 200_4 250_1 250_2 ... 2500_1 0 1591.9 133 2013-12-04 09:00:00 BEST_BID ... 2013-12-04 10:29:41
1 1589.4 30 2013-12-04 09:00:00 BEST_ASK ... 2013-12-04 11:59:22
2 1591.6 103 2013-12-04 09:00:01 BEST_BID ... 2013-12-04 11:59:23
3 1591.6 133 2013-12-04 09:00:04 BEST_BID ... 2013-12-04 11:59:26
4 1589.4 133 2013-12-04 09:00:07 BEST_BID ... 2013-12-04 11:59:29
2500_2 2500_3 2500_4 Unnamed: 844_1 Unnamed: 844_2 0 BEST_ASK 0.35 50 #N/A Invalid Security NaN
1 BEST_ASK 0.35 11 NaN NaN
2 BEST_ASK 0.40 11 NaN NaN
3 BEST_ASK 0.45 11 NaN NaN
4 BEST_ASK 0.50 21 NaN NaN
Unnamed: 844_3 Unnamed: 844_4 Unnamed: 848_1 dater
0 NaN NaN #N/A Invalid Security 2013.12.4
1 NaN NaN NaN 2013.12.4
2 NaN NaN NaN 2013.12.4
3 NaN NaN NaN 2013.12.4
4 NaN NaN NaN 2013.12.4
[5 rows x 850 columns]
Run Code Online (Sandbox Code Playgroud)
Ale*_*der 15
我遇到了将大量DataFrame连接到"不断增长的"DataFrame的性能问题.我的解决方法是将所有子DataFrame追加到列表中,然后在完成子DataFrames的处理后连接DataFrames列表.