ADJ*_*ADJ 34 python multiprocessing
我想使用Python多处理来为预测模型运行网格搜索.当我查看核心用法时,它似乎总是只使用一个核心.知道我做错了什么吗?
import multiprocessing
from sklearn import svm
import itertools
#first read some data
#X will be my feature Numpy 2D array
#y will be my 1D Numpy array of labels
#define the grid
C = [0.1, 1]
gamma = [0.0]
params = [C, gamma]
grid = list(itertools.product(*params))
GRID_hx = []
def worker(par, grid_list):
#define a sklearn model
clf = svm.SVC(C=g[0], gamma=g[1],probability=True,random_state=SEED)
#run a cross validation function: returns error
ll = my_cross_validation_function(X, y, model=clf, n=1, test_size=0.2)
print(par, ll)
grid_list.append((par, ll))
if __name__ == '__main__':
manager = multiprocessing.Manager()
GRID_hx = manager.list()
jobs = []
for g in grid:
p = multiprocessing.Process(target=worker, args=(g,GRID_hx))
jobs.append(p)
p.start()
p.join()
print("\n-------------------")
print("SORTED LIST")
print("-------------------")
L = sorted(GRID_hx, key=itemgetter(1))
for l in L[:5]:
print l
Run Code Online (Sandbox Code Playgroud)
hel*_*ert 49
您的问题是您在启动后立即加入每个作业:
for g in grid:
p = multiprocessing.Process(target=worker, args=(g,GRID_hx))
jobs.append(p)
p.start()
p.join()
Run Code Online (Sandbox Code Playgroud)
连接块,直到相应的进程完成工作.这意味着您的代码一次只启动一个进程,等待它完成然后启动下一个进程.
为了让所有进程并行运行,您需要首先启动所有进程然后将它们全部加入:
jobs = []
for g in grid:
p = multiprocessing.Process(target=worker, args=(g,GRID_hx))
jobs.append(p)
p.start()
for j in jobs:
j.join()
Run Code Online (Sandbox Code Playgroud)
文档:链接
我会说 :
for g in grid:
g.p = multiprocessing.Process(target=worker, args=(g,GRID_hx))
jobs.append(g.p)
g.p.start()
for g in grid:
g.p.join()
Run Code Online (Sandbox Code Playgroud)
目前你正在产生一份工作,然后继续完成它,然后转到下一个工作.
| 归档时间: |
|
| 查看次数: |
3545 次 |
| 最近记录: |