Ron*_*dau 0 c# math floating-point
我如何创建一个使用整数的类型,至少支持加法减法除法和乘法以及保证和整数数字IF操作导致整数(否则抛出).
例如,我希望能够做类似的事情:
Precise A = 10;
A.Divide(3);
A.GetNumber(); // This would throw an exception as 10/3 isn't an int.
A.Multiply(6);
int result = A.GetNumber; // I want result to be = to 20, not to a floating point type that would round to 2 or be very close like 1.9999999999999999999999998992
Run Code Online (Sandbox Code Playgroud)
我意识到这是一个奇怪的用例,但我确实有这个需要(执行一系列操作,在浮点可能会被错过,但保证最终成为有效的int).
因为我们无法知道10 / 3最终会产生一个精确的整数答案,直到* 6我们不得不推迟到那时为止:
public sealed class Precise
{
private interface IOperation
{
int Calculate(int value);
IOperation Combine(IOperation next);
}
private sealed class NoOp : IOperation
{
public static NoOp Instance = new NoOp();
public int Calculate(int value)
{
return value;
}
public IOperation Combine(IOperation next)
{
return next;
}
}
private sealed class Combo : IOperation
{
private readonly IOperation _first;
private readonly IOperation _second;
public Combo(IOperation first, IOperation second)
{
_first = first;
_second = second;
}
public int Calculate(int value)
{
return _second.Calculate(_first.Calculate(value));
}
public IOperation Combine(IOperation next)
{
return new Combo(_first, _second.Combine(next));
}
}
private sealed class Mult : IOperation
{
private readonly int _multiplicand;
public Mult(int multiplicand)
{
_multiplicand = multiplicand;
}
public int Calculate(int value)
{
return value * _multiplicand;
}
public int Multiplicand
{
get { return _multiplicand; }
}
public IOperation Combine(IOperation next)
{
var nextMult = next as Mult;
if(nextMult != null)
return new Mult(_multiplicand * nextMult._multiplicand);
var nextDiv = next as Div;
if(nextDiv != null)
{
int divisor = nextDiv.Divisor;
if(divisor == _multiplicand)
return NoOp.Instance;//multiplcation by 1
if(divisor > _multiplicand)
{
if(divisor % _multiplicand == 0)
return new Div(divisor / _multiplicand);
}
if(_multiplicand % divisor == 0)
return new Mult(_multiplicand / divisor);
}
return new Combo(this, next);
}
}
private sealed class Div : IOperation
{
private readonly int _divisor;
public Div(int divisor)
{
_divisor = divisor;
}
public int Divisor
{
get { return _divisor; }
}
public int Calculate(int value)
{
int ret = value / _divisor;
if(value != ret * _divisor)
throw new InvalidOperationException("Imprecise division");
return ret;
}
public IOperation Combine(IOperation next)
{
var nextDiv = next as Div;
if(nextDiv != null)
return new Div(_divisor * nextDiv._divisor);
var nextMult = next as Mult;
if(nextMult != null)
{
var multiplicand = nextMult.Multiplicand;
if(multiplicand == _divisor)
return NoOp.Instance;
if(multiplicand > _divisor)
{
if(multiplicand % _divisor == 0)
return new Mult(multiplicand / _divisor);
}
else if(_divisor % multiplicand == 0)
return new Div(multiplicand / _divisor);
}
return new Combo(this, next);
}
}
private sealed class Plus : IOperation
{
private readonly int _addend;
public Plus(int addend)
{
_addend = addend;
}
public int Calculate(int value)
{
return value + _addend;
}
public IOperation Combine(IOperation next)
{
var nextPlus = next as Plus;
if(nextPlus != null)
{
int newAdd = _addend + nextPlus._addend;
return newAdd == 0 ? (IOperation)NoOp.Instance : new Plus(newAdd);
}
return new Combo(this, next);
}
}
private readonly int _value;
private readonly IOperation _operation;
public static readonly Precise Zero = new Precise(0);
private Precise(int value, IOperation operation)
{
_value = value;
_operation = operation;
}
public Precise(int value)
: this(value, NoOp.Instance)
{
}
public int GetNumber()
{
return _operation.Calculate(_value);
}
public static explicit operator int(Precise value)
{
return value.GetNumber();
}
public static implicit operator Precise(int value)
{
return new Precise(value);
}
public override string ToString()
{
return GetNumber().ToString();
}
public Precise Multiply(int multiplicand)
{
if(multiplicand == 0)
return Zero;
return new Precise(_value, _operation.Combine(new Mult(multiplicand)));
}
public static Precise operator * (Precise precise, int value)
{
return precise.Multiply(value);
}
public Precise Divide(int divisor)
{
return new Precise(_value, _operation.Combine(new Div(divisor)));
}
public static Precise operator / (Precise precise, int value)
{
return precise.Divide(value);
}
public Precise Add(int addend)
{
return new Precise(_value, _operation.Combine(new Plus(addend)));
}
public Precise Subtract(int minuend)
{
return Add(-minuend);
}
public static Precise operator + (Precise precise, int value)
{
return precise.Add(value);
}
public static Precise operator - (Precise precise, int value)
{
return precise.Subtract(value);
}
}
Run Code Online (Sandbox Code Playgroud)
这里每个Precise都有一个整数值和一个将在其上执行的操作.进一步的操作会产生一个新的Precise(做一种可变的事情就像疯了一样),但是如果可能的话,这些操作会合并成一个简单的操作.因此,"除以3然后乘以6"变为"乘以2".
我们可以这样测试:
public static void Main(string[] args)
{
Precise A = 10;
A /= 3;
try
{
var test = (int)A;
}
catch(InvalidOperationException)
{
Console.Error.WriteLine("Invalid operation attempted");
}
A *= 6;
int result = (int)A;
Console.WriteLine(result);
// Let's do 10 / 5 * 2 = 4 because it works but can't be pre-combined:
Console.WriteLine(new Precise(10) / 5 * 2);
// Let's do 10 / 5 * 2 - 6 + 4 == 2 to mix in addition and subtraction:
Console.WriteLine(new Precise(10) / 5 * 2 - 6 + 4);
Console.Read();
}
Run Code Online (Sandbox Code Playgroud)
一个好的解决方案也可以很好地处理LHS是一个整数和RHS a所做的操作Precise,其中两者都是a Precise; 留给读者的练习;)
遗憾的是,我们必须要处理得更复杂(10 / 3 + 1) * 3,必须在Combine实现中进行改进.
编辑:对上述问题进行更深入的研究,以至少抓住大部分边缘情况,我认为它应该从处理两个Precise对象之间的操作开始,因为go int- > Precise很简单,很容易被放到在顶部,但是Precise- > int需要调用计算,可能为时过早.我还要使操作成为关键的操作(让操作存储一个或两个对象,而这些对象又包含一个操作或一个值).然后,如果你开始使用总和的表示(10 / 3) + 5并将其乘以6,则更容易将其转换为(10 * (6 / 3)) + (5 * 6)最终计算时可以给出精确结果50而不是失败因为它达到不精确10 / 3.