the*_*ing 46 python apache-spark pyspark
我想弄清楚为什么我的groupByKey返回以下内容:
[(0, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a210>), (1, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a4d0>), (2, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a390>), (3, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a290>), (4, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a450>), (5, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a350>), (6, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a1d0>), (7, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a490>), (8, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a050>), (9, <pyspark.resultiterable.ResultIterable object at 0x7fc659e0a650>)]
Run Code Online (Sandbox Code Playgroud)
我有flatMapped值,如下所示:
[(0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D'), (0, u'D')]
Run Code Online (Sandbox Code Playgroud)
我做的很简单:
groupRDD = columnRDD.groupByKey()
Run Code Online (Sandbox Code Playgroud)
dpe*_*ock 66
你得到的是一个允许你迭代结果的对象.您可以通过调用值上的list()将groupByKey的结果转换为列表,例如
example = sc.parallelize([(0, u'D'), (0, u'D'), (1, u'E'), (2, u'F')])
example.groupByKey().collect()
# Gives [(0, <pyspark.resultiterable.ResultIterable object ......]
example.groupByKey().map(lambda x : (x[0], list(x[1]))).collect()
# Gives [(0, [u'D', u'D']), (1, [u'E']), (2, [u'F'])]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
45255 次 |
最近记录: |