Rac*_*nog 5 python machine-learning theano deep-learning
我正致力于图像分类任务,并决定使用Lasagne + Nolearn进行神经网络原型.像MNIST数字分类这样的所有标准例子运行良好,但是当我尝试使用自己的图像时会出现问题.
我想使用3通道图像,而不是灰度图像.还有我正在尝试从图像中获取数组的代码:
img = Image.open(item)
img = ImageOps.fit(img, (256, 256), Image.ANTIALIAS)
img = np.asarray(img, dtype = 'float64') / 255.
img = img.transpose(2,0,1).reshape(3, 256, 256)
X.append(img)
Run Code Online (Sandbox Code Playgroud)
这是NN的代码及其拟合:
X, y = simple_load("new")
X = np.array(X)
y = np.array(y)
net1 = NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape=(None, 65536), # 96x96 input pixels per batch
hidden_num_units=100, # number of units in hidden layer
output_nonlinearity=None, # output layer uses identity function
output_num_units=len(y), # 30 target values
# optimization method:
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,
regression=True, # flag to indicate we're dealing with regression problem
max_epochs=400, # we want to train this many epochs
verbose=1,
)
net1.fit(X, y)
Run Code Online (Sandbox Code Playgroud)
我接受了这样的例外情况:
Traceback (most recent call last):
File "las_mnist.py", line 39, in <module>
net1.fit(X[i], y[i])
File "/usr/local/lib/python2.7/dist-packages/nolearn/lasagne.py", line 266, in fit
self.train_loop(X, y)
File "/usr/local/lib/python2.7/dist-packages/nolearn/lasagne.py", line 273, in train_loop
X, y, self.eval_size)
File "/usr/local/lib/python2.7/dist-packages/nolearn/lasagne.py", line 377, in train_test_split
kf = KFold(y.shape[0], round(1. / eval_size))
IndexError: tuple index out of range
Run Code Online (Sandbox Code Playgroud)
那么,您以哪种格式"提供"您的网络图像数据? 感谢您的答案或任何提示!
如果您正在进行分类,则需要修改以下几项:
regression = True.要做分类,请删除此行.因为您正在进行分类,所以您需要输出使用softmax非线性(此时您将拥有无法帮助您进行分类的标识)
X, y = simple_load("new")
X = np.array(X)
y = np.array(y)
net1 = NeuralNet(
layers=[ # three layers: one hidden layer
('input', layers.InputLayer),
('hidden', layers.DenseLayer),
('output', layers.DenseLayer),
],
# layer parameters:
input_shape=(None, 3, 256, 256), # TODO: change this
hidden_num_units=100, # number of units in hidden layer
output_nonlinearity=lasagne.nonlinearities.softmax, # TODO: change this
output_num_units=len(y), # 30 target values
# optimization method:
update=nesterov_momentum,
update_learning_rate=0.01,
update_momentum=0.9,
max_epochs=400, # we want to train this many epochs
verbose=1,
Run Code Online (Sandbox Code Playgroud)
)
我还在烤宽面条用户论坛中询问过这个问题,Oliver Duerr 通过代码示例为我提供了很多帮助: https://groups.google.com/forum/# !topic/lasagne-users/8ZA7hr2wKfM