Java中的Java比使用C++中的std :: vector快8倍.我做错了什么?

Rob*_*XSI 88 c++ java arrays performance stdvector

我有几个大型数组的Java代码,它们永远不会改变它们的大小.它在我的计算机上运行1100毫秒.

我用C++实现了相同的代码并使用了std::vector.

在我的计算机上运行完全相同代码的C++实现的时间是8800毫秒.我做错了什么,以便它慢慢地运行?

基本上代码执行以下操作:

for (int i = 0; i < numberOfCells; ++i) {
        h[i] =  h[i] + 1;
        floodedCells[i] =  !floodedCells[i];
        floodedCellsTimeInterval[i] =  !floodedCellsTimeInterval[i];
        qInflow[i] =  qInflow[i] + 1;
}
Run Code Online (Sandbox Code Playgroud)

它遍历大小约为20000的不同数组.

您可以在以下链接中找到这两种实现:

(在ideone上我只能运行循环400次而不是2000次因为时间限制.但即使在这里也有三次相差)

Cap*_*ffe 44

是的,c ++版本中的缓存需要锤击.似乎JIT更适合处理这个问题.

如果将forisUpdateNeeded()中的外部更改为更短的代码段.差异消失了.

下面的示例产生4倍的加速.

void isUpdateNeeded() {
    for (int i = 0; i < numberOfCells; ++i) {
        h[i] =  h[i] + 1;
        floodedCells[i] =  !floodedCells[i];
        floodedCellsTimeInterval[i] =  !floodedCellsTimeInterval[i];
        qInflow[i] =  qInflow[i] + 1;
        qStartTime[i] =  qStartTime[i] + 1;
        qEndTime[i] =  qEndTime[i] + 1;
    }

    for (int i = 0; i < numberOfCells; ++i) {
        lowerFloorCells[i] =  lowerFloorCells[i] + 1;
        cellLocationX[i] =  cellLocationX[i] + 1;
        cellLocationY[i] =  cellLocationY[i] + 1;
        cellLocationZ[i] =  cellLocationZ[i] + 1;
        levelOfCell[i] =  levelOfCell[i] + 1;
        valueOfCellIds[i] =  valueOfCellIds[i] + 1;
        h0[i] =  h0[i] + 1;
        vU[i] =  vU[i] + 1;
        vV[i] =  vV[i] + 1;
        vUh[i] =  vUh[i] + 1;
        vVh[i] =  vVh[i] + 1;
    }
    for (int i = 0; i < numberOfCells; ++i) {
        vUh0[i] =  vUh0[i] + 1;
        vVh0[i] =  vVh0[i] + 1;
        ghh[i] =  ghh[i] + 1;
        sfx[i] =  sfx[i] + 1;
        sfy[i] =  sfy[i] + 1;
        qIn[i] =  qIn[i] + 1;
        for(int j = 0; j < nEdges; ++j) {
            neighborIds[i * nEdges + j] = neighborIds[i * nEdges + j] + 1;
        }
        for(int j = 0; j < nEdges; ++j) {
            typeInterface[i * nEdges + j] = typeInterface[i * nEdges + j] + 1;
        }
    }

}
Run Code Online (Sandbox Code Playgroud)

这在合理的程度上表明缓存未命中是减速的原因.同样重要的是要注意变量不依赖,因此可以轻松创建线程解决方案.

订单恢复

根据stefans评论,我尝试使用原始大小将它们分组到结构中.这以类似的方式消除了立即缓存压力.结果是c ++(CCFLAG -O3)版本比java版本快约15%.

投资既不短也不漂亮.

#include <vector>
#include <cmath>
#include <iostream>



class FloodIsolation {
    struct item{
      char floodedCells;
      char floodedCellsTimeInterval;
      double valueOfCellIds;
      double h;
      double h0;
      double vU;
      double vV;
      double vUh;
      double vVh;
      double vUh0;
      double vVh0;
      double sfx;
      double sfy;
      double qInflow;
      double qStartTime;
      double qEndTime;
      double qIn;
      double nx;
      double ny;
      double ghh;
      double floorLevels;
      int lowerFloorCells;
      char flagInterface;
      char floorCompletelyFilled;
      double cellLocationX;
      double cellLocationY;
      double cellLocationZ;
      int levelOfCell;
    };
    struct inner_item{
      int typeInterface;
      int neighborIds;
    };

    std::vector<inner_item> inner_data;
    std::vector<item> data;

public:
    FloodIsolation() :
            numberOfCells(20000), inner_data(numberOfCells * nEdges), data(numberOfCells)
   {

    }
    ~FloodIsolation(){
    }

    void isUpdateNeeded() {
        for (int i = 0; i < numberOfCells; ++i) {
            data[i].h = data[i].h + 1;
            data[i].floodedCells = !data[i].floodedCells;
            data[i].floodedCellsTimeInterval = !data[i].floodedCellsTimeInterval;
            data[i].qInflow = data[i].qInflow + 1;
            data[i].qStartTime = data[i].qStartTime + 1;
            data[i].qEndTime = data[i].qEndTime + 1;
            data[i].lowerFloorCells = data[i].lowerFloorCells + 1;
            data[i].cellLocationX = data[i].cellLocationX + 1;
            data[i].cellLocationY = data[i].cellLocationY + 1;
            data[i].cellLocationZ = data[i].cellLocationZ + 1;
            data[i].levelOfCell = data[i].levelOfCell + 1;
            data[i].valueOfCellIds = data[i].valueOfCellIds + 1;
            data[i].h0 = data[i].h0 + 1;
            data[i].vU = data[i].vU + 1;
            data[i].vV = data[i].vV + 1;
            data[i].vUh = data[i].vUh + 1;
            data[i].vVh = data[i].vVh + 1;
            data[i].vUh0 = data[i].vUh0 + 1;
            data[i].vVh0 = data[i].vVh0 + 1;
            data[i].ghh = data[i].ghh + 1;
            data[i].sfx = data[i].sfx + 1;
            data[i].sfy = data[i].sfy + 1;
            data[i].qIn = data[i].qIn + 1;
            for(int j = 0; j < nEdges; ++j) {
                inner_data[i * nEdges + j].neighborIds = inner_data[i * nEdges + j].neighborIds + 1;
                inner_data[i * nEdges + j].typeInterface = inner_data[i * nEdges + j].typeInterface + 1;
            }
        }

    }

    static const int nEdges;
private:

    const int numberOfCells;

};

const int FloodIsolation::nEdges = 6;

int main() {
    FloodIsolation isolation;
    clock_t start = clock();
    for (int i = 0; i < 4400; ++i) {
        if(i % 100 == 0) {
            std::cout << i << "\n";
        }
        isolation.isUpdateNeeded();
    }

    clock_t stop = clock();
    std::cout << "Time: " << difftime(stop, start) / 1000 << "\n";
}
Run Code Online (Sandbox Code Playgroud)

我的结果与Jerry Coffins的原始尺寸略有不同.对我来说,差异仍然存在.它可能是我的java版本,1.7.0_75.

  • 将数据分组到结构中并且只有一个向量可能是个好主意 (12认同)
  • 请修复拼写错误的单词"结果".这太痛苦了.. :) (3认同)

Yak*_*ont 36

这是C++版本,其中每个节点的数据被收集到一个结构中,并使用了该结构的单个向量:

#include <vector>
#include <cmath>
#include <iostream>



class FloodIsolation {
public:
  FloodIsolation() :
      numberOfCells(20000),
      data(numberOfCells)
  {
  }
  ~FloodIsolation(){
  }

  void isUpdateNeeded() {
    for (int i = 0; i < numberOfCells; ++i) {
       data[i].h = data[i].h + 1;
       data[i].floodedCells = !data[i].floodedCells;
       data[i].floodedCellsTimeInterval = !data[i].floodedCellsTimeInterval;
       data[i].qInflow = data[i].qInflow + 1;
       data[i].qStartTime = data[i].qStartTime + 1;
       data[i].qEndTime = data[i].qEndTime + 1;
       data[i].lowerFloorCells = data[i].lowerFloorCells + 1;
       data[i].cellLocationX = data[i].cellLocationX + 1;
       data[i].cellLocationY = data[i].cellLocationY + 1;
       data[i].cellLocationZ = data[i].cellLocationZ + 1;
       data[i].levelOfCell = data[i].levelOfCell + 1;
       data[i].valueOfCellIds = data[i].valueOfCellIds + 1;
       data[i].h0 = data[i].h0 + 1;
       data[i].vU = data[i].vU + 1;
       data[i].vV = data[i].vV + 1;
       data[i].vUh = data[i].vUh + 1;
       data[i].vVh = data[i].vVh + 1;
       data[i].vUh0 = data[i].vUh0 + 1;
       data[i].vVh0 = data[i].vVh0 + 1;
       data[i].ghh = data[i].ghh + 1;
       data[i].sfx = data[i].sfx + 1;
       data[i].sfy = data[i].sfy + 1;
       data[i].qIn = data[i].qIn + 1;


      for(int j = 0; j < nEdges; ++j) {
        data[i].flagInterface[j] = !data[i].flagInterface[j];
        data[i].typeInterface[j] = data[i].typeInterface[j] + 1;
        data[i].neighborIds[j] = data[i].neighborIds[j] + 1;
      }
    }

  }

private:

  const int numberOfCells;
  static const int nEdges = 6;
  struct data_t {
    bool floodedCells = 0;
    bool floodedCellsTimeInterval = 0;

    double valueOfCellIds = 0;
    double h = 0;

    double h0 = 0;
    double vU = 0;
    double vV = 0;
    double vUh = 0;
    double vVh = 0;
    double vUh0 = 0;
    double vVh0 = 0;
    double ghh = 0;
    double sfx = 0;
    double sfy = 0;
    double qInflow = 0;
    double qStartTime = 0;
    double qEndTime = 0;
    double qIn = 0;
    double nx = 0;
    double ny = 0;
    double floorLevels = 0;
    int lowerFloorCells = 0;
    bool floorCompleteleyFilled = 0;
    double cellLocationX = 0;
    double cellLocationY = 0;
    double cellLocationZ = 0;
    int levelOfCell = 0;
    bool flagInterface[nEdges] = {};
    int typeInterface[nEdges] = {};
    int neighborIds[nEdges] = {};
  };
  std::vector<data_t> data;

};

int main() {
  std::ios_base::sync_with_stdio(false);
  FloodIsolation isolation;
  clock_t start = clock();
  for (int i = 0; i < 400; ++i) {
    if(i % 100 == 0) {
      std::cout << i << "\n";
    }
    isolation.isUpdateNeeded();
  }
  clock_t stop = clock();
  std::cout << "Time: " << difftime(stop, start) / 1000 << "\n";
}
Run Code Online (Sandbox Code Playgroud)

实例

现在的时间是Java版本速度的2倍.(846 vs 1631).

可能性是JIT注意到在整个地方访问数据的缓存,并将您的代码转换为逻辑上相似但更有效的顺序.

我也关闭标准输入输出同步,因为如果你是混合只需要printf/ scanf用C++ std::coutstd::cin.实际上,您只打印出一些值,但C++的默认打印行为过于偏执且效率低下.

如果nEdges不是实际的常量值,则必须从3中除去3"数组"值struct.这不应该导致巨大的性能损失.

您可以struct通过减小大小来对值进行排序,从而减少内存占用(以及无关紧要时的排序访问),从而获得另一个性能提升.但我不确定.

根据经验,单个高速缓存未命中比指令贵100倍.安排数据以具有缓存一致性具有很多价值.

如果将数据重新排列为a struct是不可行的,则可以将迭代更改为依次覆盖每个容器.

另外,请注意Java和C++版本之间存在一些细微差别.我发现的那个是Java版本在"for each edge"循环中有3个变量,而C++只有2个.我使我与Java匹配.我不知道是否还有其他人.


Jer*_*fin 20

正如@Stefan在评论@ CaptainGiraffe的答案时所猜测的那样,你通过使用结构向量而不是向量结构获得了相当多的收益.更正后的代码如下所示:

#include <vector>
#include <cmath>
#include <iostream>
#include <time.h>

class FloodIsolation {
public:
    FloodIsolation() :
            h(0),
            floodedCells(0),
            floodedCellsTimeInterval(0),
            qInflow(0),
            qStartTime(0),
            qEndTime(0),
            lowerFloorCells(0),
            cellLocationX(0),
            cellLocationY(0),
            cellLocationZ(0),
            levelOfCell(0),
            valueOfCellIds(0),
            h0(0),
            vU(0),
            vV(0),
            vUh(0),
            vVh(0),
            vUh0(0),
            vVh0(0),
            ghh(0),
            sfx(0),
            sfy(0),
            qIn(0),
            typeInterface(nEdges, 0),
            neighborIds(nEdges, 0)
    {
    }

    ~FloodIsolation(){
    }

    void Update() {
        h =  h + 1;
        floodedCells =  !floodedCells;
        floodedCellsTimeInterval =  !floodedCellsTimeInterval;
        qInflow =  qInflow + 1;
        qStartTime =  qStartTime + 1;
        qEndTime =  qEndTime + 1;
        lowerFloorCells =  lowerFloorCells + 1;
        cellLocationX =  cellLocationX + 1;
        cellLocationY =  cellLocationY + 1;
        cellLocationZ =  cellLocationZ + 1;
        levelOfCell =  levelOfCell + 1;
        valueOfCellIds =  valueOfCellIds + 1;
        h0 =  h0 + 1;
        vU =  vU + 1;
        vV =  vV + 1;
        vUh =  vUh + 1;
        vVh =  vVh + 1;
        vUh0 =  vUh0 + 1;
        vVh0 =  vVh0 + 1;
        ghh =  ghh + 1;
        sfx =  sfx + 1;
        sfy =  sfy + 1;
        qIn =  qIn + 1;
        for(int j = 0; j < nEdges; ++j) {
            ++typeInterface[j];
            ++neighborIds[j];
        }       
    }

private:

    static const int nEdges = 6;
    bool floodedCells;
    bool floodedCellsTimeInterval;

    std::vector<int> neighborIds;
    double valueOfCellIds;
    double h;
    double h0;
    double vU;
    double vV;
    double vUh;
    double vVh;
    double vUh0;
    double vVh0;
    double ghh;
    double sfx;
    double sfy;
    double qInflow;
    double qStartTime;
    double qEndTime;
    double qIn;
    double nx;
    double ny;
    double floorLevels;
    int lowerFloorCells;
    bool flagInterface;
    std::vector<int> typeInterface;
    bool floorCompleteleyFilled;
    double cellLocationX;
    double cellLocationY;
    double cellLocationZ;
    int levelOfCell;
};

int main() {
    std::vector<FloodIsolation> isolation(20000);
    clock_t start = clock();
    for (int i = 0; i < 400; ++i) {
        if(i % 100 == 0) {
            std::cout << i << "\n";
        }

        for (auto &f : isolation)
            f.Update();
    }
    clock_t stop = clock();
    std::cout << "Time: " << difftime(stop, start) / 1000 << "\n";
}
Run Code Online (Sandbox Code Playgroud)

使用VC++ 2015 CTP中的编译器编译,使用-EHsc -O2b2 -GL -Qpar,得到如下结果:

0
100
200
300
Time: 0.135
Run Code Online (Sandbox Code Playgroud)

使用g ++进行编译会产生稍慢的结果:

0
100
200
300
Time: 0.156
Run Code Online (Sandbox Code Playgroud)

在相同的硬件上,使用Java 8u45中的编译器/ JVM,我得到如下结果:

0
100
200
300
Time: 181
Run Code Online (Sandbox Code Playgroud)

这比VC++版本慢约35%,比g ++版本慢约16%.

如果我们将迭代次数增加到所需的2000,差异就会降到3%,这表明在这种情况下C++的部分优势就是加载速度更快(Java的长期问题),而不是真正的执行本身.在这种情况下,这并没有让我感到惊讶 - 测量的计算(在发布的代码中)是如此微不足道,我怀疑大多数编译器可以做很多事情来优化它.


Gal*_*lik 9

我怀疑这是关于内存的分配.

我正在考虑Java在程序启动时抓取一个大的连续块,然后C++询问操作系统是否随处可见.

为了对该理论进行测试,我对该C++版本进行了一次修改,它突然开始运行比Java版本稍快:

int main() {
    {
        // grab a large chunk of contiguous memory and liberate it
        std::vector<double> alloc(20000 * 20);
    }
    FloodIsolation isolation;
    clock_t start = clock();
    for (int i = 0; i < 400; ++i) {
        if(i % 100 == 0) {
            std::cout << i << "\n";
        }
        isolation.isUpdateNeeded();
    }
    clock_t stop = clock();
    std::cout << "Time: " << (1000 * difftime(stop, start) / CLOCKS_PER_SEC) << "\n";
}
Run Code Online (Sandbox Code Playgroud)

没有预分配向量的运行时:

0
100
200
300
Time: 1250.31
Run Code Online (Sandbox Code Playgroud)

使用预分配向量的运行时:

0
100
200
300
Time: 331.214
Run Code Online (Sandbox Code Playgroud)

Java版本运行时:

0
100
200
300
Time: 407
Run Code Online (Sandbox Code Playgroud)

  • @stefan我不是建议它作为解决方案,只是调查我认为的问题.它似乎与缓存无关,但C++ RTS与Java有何不同. (2认同)