big*_*ner 4 python performance numpy scipy openblas
我做了两个安装:
brew install numpy (和scipy) --with-openblas在克隆了两个方便的脚本以在多线程环境中验证这些库之后:
git clone https://gist.github.com/3842524.git
Run Code Online (Sandbox Code Playgroud)
然后对于我正在执行的每个安装show_config:
python -c "import scipy as np; np.show_config()"
Run Code Online (Sandbox Code Playgroud)
对于安装1来说一切都很好:
lapack_opt_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = f77
blas_opt_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = f77
openblas_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/opt/openblas/lib']
language = f77
blas_mkl_info:
NOT AVAILABLE
Run Code Online (Sandbox Code Playgroud)
但安装2事情并不那么光明:
lapack_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3']
define_macros = [('NO_ATLAS_INFO', 3)]
blas_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3', '- I/System/Library/Frameworks/vecLib.framework/Headers']
define_macros = [('NO_ATLAS_INFO', 3)]
Run Code Online (Sandbox Code Playgroud)
所以当我无法正确链接OpenBLAS时.但现在好了,这里是性能结果.所有测试均在iMac,Yosemite,i7-4790K,4核,超线程上进行.
首次安装OpenBLAS:
numpy的:
OMP_NUM_THREADS=1 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.126578998566 sec
OMP_NUM_THREADS=2 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.0640147686005 sec
OMP_NUM_THREADS=4 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.0360922336578 sec
OMP_NUM_THREADS=8 python test_numpy.py
FAST BLAS
version: 1.9.2
maxint: 9223372036854775807
dot: 0.0364527702332 sec
Run Code Online (Sandbox Code Playgroud)
SciPy的:
OMP_NUM_THREADS=1 python test_scipy.py
cholesky: 0.0276656150818 sec
svd: 0.732437372208 sec
OMP_NUM_THREADS=2 python test_scipy.py
cholesky: 0.0182101726532 sec
svd: 0.441690778732 sec
OMP_NUM_THREADS=4 python test_scipy.py
cholesky: 0.0130400180817 sec
svd: 0.316107988358 sec
OMP_NUM_THREADS=8 python test_scipy.py
cholesky: 0.012854385376 sec
svd: 0.315939807892 sec
Run Code Online (Sandbox Code Playgroud)
没有OpenBLAS的第二次安装:
numpy的:
OMP_NUM_THREADS=1 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0371072292328 sec
OMP_NUM_THREADS=2 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0215149879456 sec
OMP_NUM_THREADS=4 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0146862030029 sec
OMP_NUM_THREADS=8 python test_numpy.py
slow blas
version: 1.10.0.dev0+3c5409e
maxint: 9223372036854775807
dot: 0.0141334056854 sec
Run Code Online (Sandbox Code Playgroud)
SciPy的:
OMP_NUM_THREADS=1 python test_scipy.py
cholesky: 0.0109382152557 sec
svd: 0.32529540062 sec
OMP_NUM_THREADS=2 python test_scipy.py
cholesky: 0.00988121032715 sec
svd: 0.331357002258 sec
OMP_NUM_THREADS=4 python test_scipy.py
cholesky: 0.00916676521301 sec
svd: 0.318637990952 sec
OMP_NUM_THREADS=8 python test_scipy.py
cholesky: 0.00931282043457 sec
svd: 0.324427986145 sec
Run Code Online (Sandbox Code Playgroud)
令我惊讶的是,第二种情况比第一种情况要快.在scipy的情况下,添加更多内核后性能没有增加,但即使一个内核比OpenBLAS中的4个内核更快.
有谁知道为什么会这样?
有两个明显的差异可能导致差异:
你正在比较两个不同的版本numpy.使用Homebrew安装的OpenBLAS链接版本是1.9.1,而您从源代码构建的版本是1.10.0.dev0 + 3c5409e.
虽然较新版本与OpenBLAS没有关联,但它与Apple的Accelerate Framework相关联,这是一种不同的优化BLAS实现.
您的测试脚本仍然报告slow blas第二种情况的原因是由于与最新版本的numpy不兼容.您正在使用测试是否numpy的是通过对最优化的BLAS库连接的脚本检查存在numpy.core._dotblas:
try:
import numpy.core._dotblas
print 'FAST BLAS'
except ImportError:
print 'slow blas'
Run Code Online (Sandbox Code Playgroud)
在numpy的旧版本中,如果找到优化的BLAS库,则只能在安装过程中编译此C模块.但是,_dotblas在开发版本> 1.10.0中已完全删除(如前面的SO问题所述),因此脚本将始终报告slow blas这些版本.
我已经编写了numpy测试脚本的更新版本,它可以正确报告最新版本的BLAS链接; 你可以在这里找到它.
| 归档时间: |
|
| 查看次数: |
3403 次 |
| 最近记录: |