Md *_*kib 6 python algorithm memoization
我有这种记忆技术来减少获取斐波那契序列号的调用次数:
def fastFib(n, memo):
global numCalls
numCalls += 1
print 'fib1 called with', n
if not n in memo:
memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)
return memo[n]
def fib1(n):
memo = {0:1, 1:1}
return fastFib(n, memo)
numCalls = 0
n = 6
res = fib1(n)
print 'fib of', n,'=', res, 'numCalls = ', numCalls
Run Code Online (Sandbox Code Playgroud)
但我被困在这里:memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)和这里memo = {0:1, 1:1}。每次我想获得一个号码的 fib 时,它是如何准确减少呼叫次数的?
您应该memo[n]始终返回,而不仅仅是在不连续查找时返回(最后一行fastFib()):
def fastFib(n, memo):
global numCalls
numCalls += 1
print 'fib1 called with', n
if not n in memo:
memo[n] = fastFib(n-1, memo) + fastFib(n-2, memo)
#this should be outside of the if clause:
return memo[n] #<<<<<< THIS
Run Code Online (Sandbox Code Playgroud)
通过这种方式减少了调用次数,因为对于n您实际计算和递归的每个值至多一次,限制对O(n)(2n调用上限)的递归调用次数,而不是一遍又一遍地重新计算相同的值,有效进行指数数量的递归调用。
fib(5) 的一个小例子,其中每一行都是一个递归调用:
幼稚的方法:
f(5) =
f(4) + f(3) =
f(3) + f(2) + f(3) =
f(2) + f(1) + f(2) + f(3) =
f(1) + f(0) + f(1) + f(2) + f(3) = (base clauses) =
1 + f(0) + f(1) + f(2) + f(3) =
2 + f(1) + f(2) + f(3) =
3 + f(2) + f(3) =
3 + f(1) + f(0) + f(3) =
3 + 1 + f(0) + f(3) =
5 + f(3) =
5 + f(2) + f(1) =
5 + f(1) + f(0) + f(1) =
5 + 1 + f(0) + f(1) =
5 + 2 + f(1) =
8
Run Code Online (Sandbox Code Playgroud)
现在,如果你使用记忆化,你不需要重新计算很多东西(比如f(2),计算了 3 次),你会得到:
f(5) =
f(4) + f(3) =
f(3) + f(2) + f(3) =
f(2) + f(1) + f(2) + f(3) =
f(1) + f(0) + f(1) + f(2) + f(3) = (base clauses) =
1 + f(0) + f(1) + f(2) + f(3) =
2 + f(1) + f(2) + f(3) =
3 + f(2) + f(3) = {f(2) is already known}
3 + 2 + f(3) = {f(3) is already known}
5 + 3 =
8
Run Code Online (Sandbox Code Playgroud)
如您所见,第二个比第一个短,并且数字 ( n)越大,这种差异就越显着。
可以使用Python 3.2+ 中的functools库来完成
import functools
@functools.lru_cache(maxsize=None) #128 by default
def fib(num):
if num < 2:
return num
else:
return fib(num-1) + fib(num-2)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
12388 次 |
| 最近记录: |