我想从我的专栏"tweets"中删除停用词.如何迭代每一行和每个项目?
pos_tweets = [('I love this car', 'positive'),
('This view is amazing', 'positive'),
('I feel great this morning', 'positive'),
('I am so excited about the concert', 'positive'),
('He is my best friend', 'positive')]
test = pd.DataFrame(pos_tweets)
test.columns = ["tweet","class"]
test["tweet"] = test["tweet"].str.lower().str.split()
from nltk.corpus import stopwords
stop = stopwords.words('english')
Run Code Online (Sandbox Code Playgroud)
Kei*_*iku 30
我们可以stopwords从nltk.corpus下面导入.有了它,我们用Python的列表理解和排除停用词pandas.DataFrame.apply.
# Import stopwords with nltk.
from nltk.corpus import stopwords
stop = stopwords.words('english')
pos_tweets = [('I love this car', 'positive'),
('This view is amazing', 'positive'),
('I feel great this morning', 'positive'),
('I am so excited about the concert', 'positive'),
('He is my best friend', 'positive')]
test = pd.DataFrame(pos_tweets)
test.columns = ["tweet","class"]
# Exclude stopwords with Python's list comprehension and pandas.DataFrame.apply.
test['tweet_without_stopwords'] = test['tweet'].apply(lambda x: ' '.join([word for word in x.split() if word not in (stop)]))
print(test)
# Out[40]:
# tweet class tweet_without_stopwords
# 0 I love this car positive I love car
# 1 This view is amazing positive This view amazing
# 2 I feel great this morning positive I feel great morning
# 3 I am so excited about the concert positive I excited concert
# 4 He is my best friend positive He best friend
Run Code Online (Sandbox Code Playgroud)
它也可以通过使用排除pandas.Series.str.replace.
pat = r'\b(?:{})\b'.format('|'.join(stop))
test['tweet_without_stopwords'] = test['tweet'].str.replace(pat, '')
test['tweet_without_stopwords'] = test['tweet_without_stopwords'].str.replace(r'\s+', ' ')
# Same results.
# 0 I love car
# 1 This view amazing
# 2 I feel great morning
# 3 I excited concert
# 4 He best friend
Run Code Online (Sandbox Code Playgroud)
如果您无法导入停用词,可以按如下方式下载.
import nltk
nltk.download('stopwords')
Run Code Online (Sandbox Code Playgroud)
回答另一种方法是导入text.ENGLISH_STOP_WORDS的sklearn.feature_extraction.
# Import stopwords with scikit-learn
from sklearn.feature_extraction import text
stop = text.ENGLISH_STOP_WORDS
Run Code Online (Sandbox Code Playgroud)
请注意,scikit-learn stopwords和nltk停用词中的单词数量不同.
Lia*_*ley 26
使用列表理解
test['tweet'].apply(lambda x: [item for item in x if item not in stop])
Run Code Online (Sandbox Code Playgroud)
返回:
0 [love, car]
1 [view, amazing]
2 [feel, great, morning]
3 [excited, concert]
4 [best, friend]
Run Code Online (Sandbox Code Playgroud)
如果您想要简单的东西但不想要返回单词列表:
test["tweet"].apply(lambda words: ' '.join(word.lower() for word in words.split() if word not in stop))
Run Code Online (Sandbox Code Playgroud)
其中 stop 的定义与 OP 相同。
from nltk.corpus import stopwords
stop = stopwords.words('english')
Run Code Online (Sandbox Code Playgroud)
查看 pd.DataFrame.replace(),它可能对你有用:
In [42]: test.replace(to_replace='I', value="",regex=True)
Out[42]:
tweet class
0 love this car positive
1 This view is amazing positive
2 feel great this morning positive
3 am so excited about the concert positive
4 He is my best friend positive
Run Code Online (Sandbox Code Playgroud)
编辑:replace()将搜索字符串(甚至子字符串)。例如,它将替换rkfrom workifrk是一个有时不期望的停用词。
因此在regex这里使用:
for i in stop :
test = test.replace(to_replace=r'\b%s\b'%i, value="",regex=True)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
39187 次 |
| 最近记录: |