这是一个data.table
dt <- data.table(group = c("a","a","a","b","b","b"), x = c(1,3,5,1,3,5), y= c(3,5,8,2,8,9))
dt
group x y
1: a 1 3
2: a 3 5
3: a 5 8
4: b 1 2
5: b 3 8
6: b 5 9
Run Code Online (Sandbox Code Playgroud)
这是一个在data.table上运行并返回data.table的函数
myfunc <- function(dt){
# Hyman spline interpolation (which preserves monotonicity)
newdt <- data.table(x = seq(min(dt$x), max(dt$x)))
newdt$y <- spline(x = dt$x, y = dt$y, xout = newdt$x, method = "hyman")$y
return(newdt)
}
Run Code Online (Sandbox Code Playgroud)
如何应用myfunc"组"列定义的每个dt子集?换句话说,我想要一种有效的,通用的方法来做到这一点
result <- rbind(myfunc(dt[group=="a"]), myfunc(dt[group=="b"]))
result
x y
1: 1 3.000
2: 2 3.875
3: 3 5.000
4: 4 6.375
5: 5 8.000
6: 1 2.000
7: 2 5.688
8: 3 8.000
9: 4 8.875
10: 5 9.000
Run Code Online (Sandbox Code Playgroud)
编辑:我已经更新了我的样本数据集,myfunc因为我认为它最初过于简单化,并邀请解决我正在尝试解决的实际问题.
整个想法data.table是内存高效和快速.因此,我们从不$在data.table范围内使用(仅在非常罕见的情况下),并且我们不在s环境中创建data.table对象data.table(当前,甚至.SD有开销).
你的情况,你可以利用data.table的非标评价功能和定义功能如下
myfunc <- function(x, y){
temp = seq(min(x), max(x))
y = spline(x = x, y = y, xout = temp, method = "hyman")$y
list(x = temp, y = y)
}
Run Code Online (Sandbox Code Playgroud)
然后dt范围内的实现是直截了当的
dt[, myfunc(x, y), by = group]
# group x y
# 1: a 1 3.0000
# 2: a 2 3.8750
# 3: a 3 5.0000
# 4: a 4 6.3750
# 5: a 5 8.0000
# 6: b 1 2.0000
# 7: b 2 5.6875
# 8: b 3 8.0000
# 9: b 4 8.8750
# 10: b 5 9.0000
Run Code Online (Sandbox Code Playgroud)