use*_*672 1 r concatenation data-structures tidyr
我已经尝试在这里和这里解决这个问题了 - 原因得到了很好的答案,但我意识到这只是我认为是一个普遍问题的部分解决方案:通常数据被组织为有变量(最有趣的是显然)每个变量一列,然后是最后一列,其中几个变量值对已放在一起.我一直在努力寻找将最后一列变量转换为单独列的一般方法,这应该整理数据不是一项工作tidyr吗?
require(dplyr)
require(stringr)
data <-
data.frame(
shoptype=c("A","B","B"),
city=c("bah", "bah", "slah"),
sale=c("type cheese; price 200", "type ham; price 150","type cheese; price 100" )) %>%
tbl_df()
> data
Source: local data frame [3 x 3]
shoptype city sale
1 A bah type cheese; price 200
2 B bah type ham; price 150
3 B slah type cheese; price 100
Run Code Online (Sandbox Code Playgroud)
在这里,我们获得了一些城市中一些商店的信息,这些商店有一个连接列,其中变量用";"分隔 和var-val与空间.人们希望输出如下:
shoptype city type price
1 A bah cheese 200
2 B bah ham 150
3 B slah cheese 100
Run Code Online (Sandbox Code Playgroud)
当所有行都是唯一的行时(参见链接的SO问题)
require(plyr)
require(dplyr)
require(stringr)
require(tidyr)
data %>%
mutate(sale = str_split(as.character(sale), "; ")) %>%
unnest(sale) %>%
mutate(sale = str_trim(sale)) %>%
separate(sale, into = c("var", "val")) %>%
spread(var, val)
Run Code Online (Sandbox Code Playgroud)
但是如果我们将第二行shoptype改为"A",我们就会因此而出错.喜欢:
data2 <-
data.frame(
shoptype=c("A","A","B"),
city=c("bah", "bah", "slah"),
sale=c("type cheese; price 200", "type ham; price 150","type cheese; price 100" )) %>%
tbl_df()
data2 %>%
mutate(sale = str_split(as.character(sale), "; ")) %>%
unnest(sale) %>%
mutate(sale = str_trim(sale)) %>%
separate(sale, into = c("var", "val")) %>%
spread(var, val)
Error: Duplicate identifiers for rows (2, 4), (1, 3)
Run Code Online (Sandbox Code Playgroud)
我尝试用唯一的ID来解决这个问题(再次看到链接的SO答案):
data2 %>%
mutate(sale = str_split(as.character(sale), "; ")) %>%
unnest(sale) %>%
mutate(sale = str_trim(sale),
v0=rownames(.)) %>%
separate(sale, into = c("var", "val")) %>%
spread(var, val)
Source: local data frame [6 x 5]
shoptype city v0 price type
1 A bah 1 NA cheese
2 A bah 2 200 NA
3 A bah 3 NA ham
4 A bah 4 150 NA
5 B slah 5 NA cheese
6 B slah 6 100 NA
Run Code Online (Sandbox Code Playgroud)
这给出了结构缺失的数据,我无法弄清楚如上面所需的输出所描述的如何收集.
我想我真的错过了一些属于tidyr范围的东西(我希望!).
我认为不需要使用tidyr::unnest和tidyr::gather.这是一个专注于stringr::str_replace和的替代解决方案tidyr::separate:
library(dplyr)
library(stringr)
library(tidyr)
data2 %>%
mutate(
sale = str_replace(sale, "type ", ""),
sale = str_replace(sale, " price ", "")
) %>%
separate(sale, into = c("type", "price"), sep = ";")
# Source: local data frame [3 x 4]
# shoptype city type price
# 1 A bah cheese 200
# 2 A bah ham 150
# 3 B slah cheese 100
Run Code Online (Sandbox Code Playgroud)