Ram*_*ams 8 mysql sql aggregate-functions query-performance mysql-variables
我们在MySql中有一个表有大约3000万条记录,以下是表结构
CREATE TABLE `campaign_logs` (
`domain` varchar(50) DEFAULT NULL,
`campaign_id` varchar(50) DEFAULT NULL,
`subscriber_id` varchar(50) DEFAULT NULL,
`message` varchar(21000) DEFAULT NULL,
`log_time` datetime DEFAULT NULL,
`log_type` varchar(50) DEFAULT NULL,
`level` varchar(50) DEFAULT NULL,
`campaign_name` varchar(500) DEFAULT NULL,
KEY `subscriber_id_index` (`subscriber_id`),
KEY `log_type_index` (`log_type`),
KEY `log_time_index` (`log_time`),
KEY `campid_domain_logtype_logtime_subid_index` (`campaign_id`,`domain`,`log_type`,`log_time`,`subscriber_id`),
KEY `domain_logtype_logtime_index` (`domain`,`log_type`,`log_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
Run Code Online (Sandbox Code Playgroud)
以下是我的查询
我正在做UNION ALL而不是使用IN操作
SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
count(DISTINCT subscriber_id) AS COUNT,
COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
AND campaign_id='123'
AND log_type = 'EMAIL_OPENED'
AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date
UNION ALL
SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
COUNT(DISTINCT subscriber_id) AS COUNT,
COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
AND campaign_id='123'
AND log_type = 'EMAIL_SENT'
AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date
UNION ALL
SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
COUNT(DISTINCT subscriber_id) AS COUNT,
COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
AND campaign_id='123'
AND log_type = 'EMAIL_CLICKED'
AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date,
Run Code Online (Sandbox Code Playgroud)
以下是我的解释声明
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
| 1 | PRIMARY | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 55074 | Using where; Using index; Using filesort |
| 2 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 330578 | Using where; Using index; Using filesort |
| 3 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 1589 | Using where; Using index; Using filesort |
| NULL | UNION RESULT | <union1,2,3> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
2.我从查询中删除了COUNT(DISTINCT subscriber_id),然后我获得了巨大的性能提升,我得到了大约1.5秒的结果,之前它花费了50秒-1分钟.但我需要查询中不同的subscriber_id计数
当我从查询中删除COUNT(DISTINCT subscriber_id)时,将解释以下内容
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
| 1 | PRIMARY | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 55074 | Using where; Using index; Using temporary; Using filesort |
| 2 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 330578 | Using where; Using index; Using temporary; Using filesort |
| 3 | UNION | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468 | NULL | 1589 | Using where; Using index; Using temporary; Using filesort |
| NULL | UNION RESULT | <union1,2,3> | ALL | NULL | NULL | NULL | NULL | NULL | |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
我可以通过遗漏解决我的性能问题,COUNT(DISTINCT...)但我需要这些值.有没有办法重构我的查询,或添加索引,或什么,以获得COUNT(DISTINCT...)值,但更快?
更新 以下信息是关于上表的数据分布
1域1活动20 log_types 1k-200k订阅者
上面的查询我正在运行,域名拥有180k +订阅者.
如果没有的查询count(distinct)速度要快得多,也许你可以做嵌套聚合:
SELECT log_type, log_date,
count(*) AS COUNT, sum(cnt) AS total
FROM (SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
subscriber_id, count(*) as cnt
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN = 'xxx' AND
campaign_id = '123' AND
log_type IN ('EMAIL_SENT', 'EMAIL_OPENED', 'EMAIL_CLICKED') AND
log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND
CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY logtype, log_date, subscriber_id
) l
GROUP BY logtype, log_date;
Run Code Online (Sandbox Code Playgroud)
运气好的话,这需要2-3秒而不是50秒.但是,您可能需要将其分解为子查询,以获得完整的性能.因此,如果这没有显着的性能提升,请将其更改in为=其中一种类型.如果可行,那么union all可能是必要的.
编辑:
另一种尝试是使用变量枚举前面的值group by:
SELECT log_type, log_date, count(*) as cnt,
SUM(rn = 1) as sub_cnt
FROM (SELECT log_type,
DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
subscriber_id,
(@rn := if(@clt = concat_ws(':', campaign_id, log_type, log_time), @rn + 1,
if(@clt := concat_ws(':', campaign_id, log_type, log_time), 1, 1)
)
) as rn
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index) CROSS JOIN
(select @rn := 0)
WHERE DOMAIN = 'xxx' AND
campaign_id = '123' AND
log_type IN ('EMAIL_SENT', 'EMAIL_OPENED', 'EMAIL_CLICKED') AND
log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00', '+00:00', '+05:30') AND
CONVERT_TZ('2015-03-01 23:59:58', '+00:00', '+05:30')
ORDER BY logtype, log_date, subscriber_id
) t
GROUP BY log_type, log_date;
Run Code Online (Sandbox Code Playgroud)
这仍然需要另一种数据,但它可能会有所帮助.
| 归档时间: |
|
| 查看次数: |
3780 次 |
| 最近记录: |