即使使用覆盖索引,也可以优化COUNT(DISTINCT)的缓慢

Ram*_*ams 8 mysql sql aggregate-functions query-performance mysql-variables

我们在MySql中有一个表有大约3000万条记录,以下是表结构

CREATE TABLE `campaign_logs` (
  `domain` varchar(50) DEFAULT NULL,
  `campaign_id` varchar(50) DEFAULT NULL,
  `subscriber_id` varchar(50) DEFAULT NULL,
  `message` varchar(21000) DEFAULT NULL,
  `log_time` datetime DEFAULT NULL,
  `log_type` varchar(50) DEFAULT NULL,
  `level` varchar(50) DEFAULT NULL,
  `campaign_name` varchar(500) DEFAULT NULL,
  KEY `subscriber_id_index` (`subscriber_id`),
  KEY `log_type_index` (`log_type`),
  KEY `log_time_index` (`log_time`),
  KEY `campid_domain_logtype_logtime_subid_index` (`campaign_id`,`domain`,`log_type`,`log_time`,`subscriber_id`),
  KEY `domain_logtype_logtime_index` (`domain`,`log_type`,`log_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
Run Code Online (Sandbox Code Playgroud)

以下是我的查询

我正在做UNION ALL而不是使用IN操作

SELECT log_type,
       DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
       count(DISTINCT subscriber_id) AS COUNT,
       COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
  AND campaign_id='123'
  AND log_type = 'EMAIL_OPENED'
  AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date

UNION ALL

SELECT log_type,
       DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
       COUNT(DISTINCT subscriber_id) AS COUNT,
            COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
  AND campaign_id='123'
  AND log_type = 'EMAIL_SENT'
  AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date

UNION ALL

SELECT log_type,
       DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
       COUNT(DISTINCT subscriber_id) AS COUNT,
            COUNT(subscriber_id) AS total
FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
WHERE DOMAIN='xxx'
  AND campaign_id='123'
  AND log_type = 'EMAIL_CLICKED'
  AND log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
GROUP BY log_date,
Run Code Online (Sandbox Code Playgroud)

以下是我的解释声明

+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
| id | select_type  | table         | type  | possible_keys                             | key                                       | key_len | ref  | rows   | Extra                                    |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
|  1 | PRIMARY      | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468     | NULL |  55074 | Using where; Using index; Using filesort |
|  2 | UNION        | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468     | NULL | 330578 | Using where; Using index; Using filesort |
|  3 | UNION        | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468     | NULL |   1589 | Using where; Using index; Using filesort |
| NULL | UNION RESULT | <union1,2,3>  | ALL   | NULL                                      | NULL                                      | NULL    | NULL |   NULL |                                          |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
  1. 我将COUNT(subscriber_id)更改为COUNT(*)并且没有观察到性能提升.

2.我从查询中删除了COUNT(DISTINCT subscriber_id),然后我获得了巨大的性能提升,我得到了大约1.5秒的结果,之前它花费了50秒-1分钟.但我需要查询中不同的subscriber_id计数

当我从查询中删除COUNT(DISTINCT subscriber_id)时,将解释以下内容

+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
| id | select_type  | table         | type  | possible_keys                             | key                                       | key_len | ref  | rows   | Extra                                                     |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
|  1 | PRIMARY      | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468     | NULL |  55074 | Using where; Using index; Using temporary; Using filesort |
|  2 | UNION        | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468     | NULL | 330578 | Using where; Using index; Using temporary; Using filesort |
|  3 | UNION        | campaign_logs | range | campid_domain_logtype_logtime_subid_index | campid_domain_logtype_logtime_subid_index | 468     | NULL |   1589 | Using where; Using index; Using temporary; Using filesort |
| NULL | UNION RESULT | <union1,2,3>  | ALL   | NULL                                      | NULL                                      | NULL    | NULL |   NULL |                                                           |
+----+--------------+---------------+-------+-------------------------------------------+-------------------------------------------+---------+------+--------+-----------------------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
  1. 我通过删除UNION ALL单独运行了三个查询.ONe查询需要32秒,其他查询需要1.5秒,但第一个查询处理大约350K记录而其他查询只处理2k行

我可以通过遗漏解决我的性能问题,COUNT(DISTINCT...)但我需要这些值.有没有办法重构我的查询,或添加索引,或什么,以获得COUNT(DISTINCT...)值,但更快?

更新 以下信息是关于上表的数据分布

1域1活动20 log_types 1k-200k订阅者

上面的查询我正在运行,域名拥有180k +订阅者.

Gor*_*off 5

如果没有的查询count(distinct)速度要快得多,也许你可以做嵌套聚合:

SELECT log_type, log_date,
       count(*) AS COUNT, sum(cnt) AS total
FROM (SELECT log_type,
             DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
             subscriber_id, count(*) as cnt
      FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index)
      WHERE DOMAIN = 'xxx' AND
            campaign_id = '123' AND
            log_type IN ('EMAIL_SENT', 'EMAIL_OPENED', 'EMAIL_CLICKED') AND
            log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00','+00:00','+05:30') AND 
                             CONVERT_TZ('2015-03-01 23:59:58','+00:00','+05:30')
      GROUP BY logtype, log_date, subscriber_id
     ) l
GROUP BY logtype, log_date;
Run Code Online (Sandbox Code Playgroud)

运气好的话,这需要2-3秒而不是50秒.但是,您可能需要将其分解为子查询,以获得完整的性能.因此,如果这没有显着的性能提升,请将其更改in=其中一种类型.如果可行,那么union all可能是必要的.

编辑:

另一种尝试是使用变量枚举前面的值group by:

SELECT log_type, log_date, count(*) as cnt,
       SUM(rn = 1) as sub_cnt
FROM (SELECT log_type,
             DATE_FORMAT(CONVERT_TZ(log_time,'+00:00','+05:30'),'%l %p') AS log_date,
             subscriber_id,
             (@rn := if(@clt = concat_ws(':', campaign_id, log_type, log_time), @rn + 1,
                        if(@clt := concat_ws(':', campaign_id, log_type, log_time), 1, 1)
                       )
              ) as rn
      FROM stats.campaign_logs USE INDEX(campid_domain_logtype_logtime_subid_index) CROSS JOIN
           (select @rn := 0)
      WHERE DOMAIN = 'xxx' AND
            campaign_id = '123' AND
            log_type IN ('EMAIL_SENT', 'EMAIL_OPENED', 'EMAIL_CLICKED') AND
            log_time BETWEEN CONVERT_TZ('2015-02-01 00:00:00', '+00:00', '+05:30') AND 
                             CONVERT_TZ('2015-03-01 23:59:58', '+00:00', '+05:30')
      ORDER BY logtype, log_date, subscriber_id
     ) t
GROUP BY log_type, log_date;
Run Code Online (Sandbox Code Playgroud)

这仍然需要另一种数据,但它可能会有所帮助.