BBH*_*gin 2 python netcdf cdo-climate
我有一个netCDF(.nc)文件的大文件夹,每个文件都有一个相似的名字.数据文件包含时间,经度,纬度和月降水量的变量.目标是使每个月的平均月降水量超过X年.因此,最后我将得到12个值,表示每个纬度和长度的X年平均月降水量.多年来,每个文件都是同一个位置.每个文件以相同的名称开头,以"date.sub.nc"结尾,例如:
'data1.somthing.somthing1.avg_2d_Ind_Nx.200109.SUB.nc'
'data1.somthing.somthing1.avg_2d_Ind_Nx.200509.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201104.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201004.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201003.SUB.nc'
'data2.somthing.somthing1.avg_2d_Ind_Nx.201103.SUB.nc'
'data1.somthing.somthing1.avg_2d_Ind_Nx.201203.SUB.nc'
Run Code Online (Sandbox Code Playgroud)
结局是YearMonth.SUB.nc到目前为止我所拥有的是:
array=[]
f = nc.MFDataset('data*.nc')
precp = f.variables['prectot']
time = f.variables['time']
array = f.variables['time','longitude','latitude','prectot']
Run Code Online (Sandbox Code Playgroud)
我得到一个KeyError :('时间','经度','纬度','prectot').有没有办法结合所有这些数据,所以我能够操纵它?
正如@CharlieZender所提到的,ncra是这里的方法,我将提供有关将该功能集成到Python脚本中的更多细节.(PS - 您可以使用Homebrew轻松安装NCO,例如http://alejandrosoto.net/blog/2014/01/22/setting-up-my-mac-for-scientific-research/)
import subprocess
import netCDF4
import glob
import numpy as np
for month in range(1,13):
# Gather all the files for this month
month_files = glob.glob('/path/to/files/*{0:0>2d}.SUB.nc'.format(month))
# Using NCO functions ---------------
avg_file = './precip_avg_{0:0>2d}.nc'.format(month)
# Concatenate the files using ncrcat
subprocess.call(['ncrcat'] + month_files + ['-O', avg_file])
# Take the time (record) average using ncra
subprocess.call(['ncra', avg_file, '-O', avg_file])
# Read in the monthly precip climatology file and do whatever now
ncfile = netCDF4.Dataset(avg_file, 'r')
pr = ncfile.variables['prectot'][:,:,:]
....
# Using only Python -------------
# Initialize an array to store monthly-mean precip for all years
# let's presume we know the lat and lon dimensions (nlat, nlon)
nyears = len(month_files)
pr_arr = np.zeros([nyears,nlat,nlon], dtype='f4')
# Populate pr_arr with each file's monthly-mean precip
for idx, filename in enumerate(month_files):
ncfile = netCDF4.Dataset(filename, 'r')
pr = ncfile.variable['prectot'][:,:,:]
pr_arr[idx,:,:] = np.mean(pr, axis=0)
ncfile.close()
# Take the average along all years for a monthly climatology
pr_clim = np.mean(pr_arr, axis=0) # 2D now [lat,lon]
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3138 次 |
| 最近记录: |