matlab:矢量化4D矩阵和

Jua*_*ero 4 performance matlab matrix vectorization nested-loops

我需要在MATLAB中执行以下计算:

其中w和v是具有N个元素的向量,A是四维矩阵(N ^ 4个元素).这可以通过以下迂腐代码来实现:

N=10;
A=rand(N,N,N,N);
v=rand(N,1);
w=zeros(N,1);

for pp=1:N
  for ll=1:N
    for mm=1:N
      for nn=1:N
        w(pp)=w(pp)+A(pp,ll,mm,nn)*v(ll)*v(mm)*conj(v(nn));
      end
    end
  end
end
Run Code Online (Sandbox Code Playgroud)

这是非常慢的.有没有办法在MATLAB中对这种求和进行矢量化?

Div*_*kar 6

方法#1

少数reshape矩阵乘法 -

A1 = reshape(A,N^3,N)*conj(v)
A2 = reshape(A1,N^2,N)*v
w = reshape(A2,N,N)*v
Run Code Online (Sandbox Code Playgroud)

方法#2

有一个bsxfun,reshapematrix-multiplication-

A1 = reshape(A,N^3,N)*conj(v)
vm = bsxfun(@times,v,v.')
w = reshape(A1,N,N^2)*vm(:)
Run Code Online (Sandbox Code Playgroud)

标杆

本节比较了本文中列出的两种方法的运行时,Shai的帖子中首次测试的方法和问题中列出的原始方法.

基准代码

N=100;
A=rand(N,N,N,N);
v=rand(N,1);

disp('----------------------------------- With Original Approach')
tic
%// .... Code from the original post   ...//
toc

disp('----------------------------------- With Shai Approach #1')
tic
s4 = sum( bsxfun( @times, A, permute( conj(v), [4 3 2 1] ) ), 4 ); 
s3 = sum( bsxfun( @times, s4, permute( v, [3 2 1] ) ), 3 );
w2 = s3*v; 
toc

disp('----------------------------------- With Divakar Approach #1')
tic
A1 = reshape(A,N^3,N)*conj(v);
A2 = reshape(A1,N^2,N)*v;
w3 = reshape(A2,N,N)*v;
toc

disp('----------------------------------- With Divakar Approach #2')
tic
A1 = reshape(A,N^3,N)*conj(v);
vm = bsxfun(@times,v,v.');
w4 = reshape(A1,N,N^2)*vm(:);
toc
Run Code Online (Sandbox Code Playgroud)

运行时结果

----------------------------------- With Original Approach
Elapsed time is 4.604767 seconds.
----------------------------------- With Shai Approach #1
Elapsed time is 0.334667 seconds.
----------------------------------- With Divakar Approach #1
Elapsed time is 0.071905 seconds.
----------------------------------- With Divakar Approach #2
Elapsed time is 0.058877 seconds.
Run Code Online (Sandbox Code Playgroud)

结论

这篇文章中的第二种方法似乎是关于80x加速原始方法.